
Python Level-1 with Virtual Robotics
Learn Python with virtual robotics challenges and a pathway to Certification.

Mission 1 - Welcome
Take a tour of the CodeSpace Development Environment.

Objective 1 - Mission Objectives

Objectives
Each Mission contains a series of Objectives. You're now reading an Objective Panel.

Objectives are numbered on the Mission Bar to the right.
Click the number to show or hide the Objective Panel.
Use the icons at the top of the Mission Bar to choose from available Missions and Packs.

The goals to complete the Objective are below:

Goal:

Click the 1 on the Mission Bar to close the Objective Panel →

Then click 1 again to bring it back!

Solution:

N/A

Objective 2 - Text Editor

Text Editor
On the left side of your screen is the text editor.

You'll be typing in Python code here!
That's how you'll control your physical or virtual device.

Goal:

Complete this Objective by making any change in the text editor.

Solution:

N/A

Objective 3 - Tool Box

Your Coding Toolbox
As you work through each mission you'll be adding concepts to your toolbox.

It's an important reference you will need in later missions!
And when you are coding and debugging your own remixes.

Collect 'em ALL!

When you see a tool, CLICK on it!

You won't have anything in your toolbox unless you put it there.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 1 of 237



Access Your Tools

You can always open up your toolbox later for reference.

Just click the business_center at the right side of the window.

Goal:

Click the build tool text above to open the Toolbox and then close the Toolbox.

Tools Found: Debugging

Solution:

N/A

Objective 4 - Simulation Controls

Simulation Controls
Below the 3D view is your Simulation Toolbar.

There are controls to select a 3D filter_hdr environment.
You can also control the videocam Camera in the 3D scene, and more!

This is a virtual camera for zooming around inside the sim, not your webcam!
You can manage with a trackpad, but a mouse is highly recommended for 3D navigation.

Click on the Camera videocam menu below.

Select Help help
Click the close inside the Camera Help window to close it.

Want to hide these instructions?

Click the close at the upper-right corner.
You can always bring an Objective back by clicking its number on the right side.
Or you can maximize it by clicking check_box_outline_blank

Goals:

Open and close the Camera Help.

Rotate the camera view around the virtual device in the 3D scene!

Solution:

N/A

Quiz 1 - Your First Mission Quiz

Question 1: Are you ready to learn some Python coding with your virtual or physical device?

done Yes. This is simple!

close It looks too complicated.

close I don't think I can.

Question 2: Select the two things you learned in this mission.

done How to move the camera

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 2 of 237



done How to open an objective

close How to run a half marathon

close How to control the weather

Mission 2 - Introducing CodeBot
Get to know your friendly neighborhood Virtual Robot!

Objective 1 - Motors

Motors - Programmable Electric Engines
CodeBot's motors power the wheels that move it around.

They convert electric power to mechanical rotation.

The picture at right shows a motor without its protective black cover, and with the
gearbox open.

You'll soon be controlling those motors with Python code!

Locate the motors in the 3D View, and click on one of them...

To hide these instructions click the close at the upper-right corner or press CLOSE

Goal:

Click one of the Motors in the 3D view

Tools Found: Motors

Solution:

N/A

Objective 2 - LED Lights

LEDs - Lighting the Way
"Light Emitting Diodes" are tiny and efficient electronic components that produce light.

There are 17 visible light LEDs on CodeBot
...and there are 8 more LEDs that emit infrared light only robots can see ;-)

Like everything on CodeBot, they pretty much do nothing...

Until YOU write some code to control them!
You'll be doing that in the next mission.

Up close the LEDs look like little clear boxes:

Zoom In!

Use your mouse and the videocam Camera controls to zoom-in for a closer look at the LEDs.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 3 of 237



Goal:

Click an LED on your virtual CodeBot in the 3d View!

Tools Found: LED

Solution:

N/A

Objective 3 - Speaker

Speaker - Make some Noise!
...or, make beautiful music. It's your choice.

There's a real speaker aboard your 'bot.
Inside this little black cylinder is an electromagnet with a permanent magnet to pull against.
Hey, that's basically what's going on in the motors too!

Goal:

Click on the Speaker in the 3D View

Tools Found: Speaker

Solution:

N/A

Objective 4 - Wheel Encoders

Wheel Encoders
Your code can control the power applied to the motors, but to know exactly how far the wheels have turned you'll need to sense
rotation. That's the job of these Encoders

View from beneath CodeBot

As the encoder disc rotates, an invisible IR (infrared) light beam passes through its slots. Your code can count the pulses of light to
see how far the wheel has rotated.

Goal:

Click on one of the black Encoder Discs in the 3D View

Tools Found: Wheel Encoders

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 4 of 237



Solution:

N/A

Objective 5 - Pushbuttons

Pushbuttons, Line Sensors, Proximity Sensors, Accelerometer, and more...
Okay, last objective for this "Intro" Mission... Then we start coding!

As you've seen, there's a lot happening on your CodeBot.
You'll explore all of it by writing Python code to complete Missions.
...and you're gonna need all those capabilities for the challenges we have in store!

Goal:

Complete this objective by clicking on a CodeBot Button in the 3D View.

(There are 3 of them to choose from!)

Tools Found: Buttons

Solution:

N/A

Mission 3 - Light the Way
Write some Python code to light up those LEDs and get CodeBot flashing.

Objective 1 - Hello, LED!

Embedded Programming's "Hello World"
You may have heard about the concept of a "Hello World" program.

That's traditionally the first program you write when you learn a new language.

But what about an embedded system, like a robot that has no text-display?

Ya BLINK an LED insert_emoticon
Yes, a single LED may not seem exciting. But from such humble beginnings, massive starships are built...

So, here's your code:

Type this into the text editor (left side of screen).

Go ahead and delete any sample code that's already there, and type in the following:
from botcore import *
leds.user_num(0, True)

Click the directions_walk CodeTrek button below to learn more about the code for an objective.

To RUN this on your CodeBot, press the play_arrow button!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 5 of 237



It's at the top of your screen just above the text editor.

CodeTrek:

1  from botcore import * 

2  leds.user_num(0, True) 

3  

Goals:

Open the CodeTrek to learn about your code with the directions_walk button

RUN play_arrow your code to LIGHT User LED number 0

Solution:

1  from botcore import *
2  leds.user_num(0, True)

Objective 2 - LED Patterns

LED Binary Patterns
There are 8 red LEDs labeled 0-7 just above the word "BYTE"

"BYTE" means 8-bits, which are "binary digits"
And binary means base-2, so the digits are '0' (OFF) and '1' (ON)

You could use these "user" LEDs to display any number in binary!

...um, actually only  = 256 different numbers.

Naturally, your Python code can control ALL the CodeBot LEDs.

Start by controlling the USER LEDs one bit at a time

Notice the LED numbering starts at 0.

They count up from right to left.
The CodeTrek will show you the way!

Sometimes the CodeTrek will be vital to learning more!

This button will open the CodeTrek directly from the instructions:

CodeTrek:

 1  # Access CodeBot's built-in "botcore" library 

This line gives your Python program access to CodeBot's hardware.

You are import ing from the botcore library module.
The "*" means import everything!

The leds symbol is from the botcore library you imported above.

You are invoking a function user_num(num, is_on)
with arguments: num = 0 and is_on = True
This will turn USER LED number 0 on!

28

CODETREK

This line is a comment.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 6 of 237



 2  from botcore import *  

 3  
 4  # To make the pattern 10011001 there are 4 LEDs to turn on:
 5  #   0, 3, 4, 7
 6  
 7  # Set User LED bit number 0 to True (ON)
 8  leds.user_num(0, True) 

 9  
10  # Now do the same for the other three LEDs
11  leds.user_num(...)
12  leds.user_num(...)
13  leds.user_num(...) 

14  

Goals:

Run through the CodeTrek using the button in the instructions of the objective panel.

Display the following pattern with the CodeBot user LEDs:

1 0 0 1 1 0 0 1

Tools Found: Binary Numbers, CodeBot LEDs

Solution:

 1  # Access CodeBot's built-in "botcore" library
 2  from botcore import *
 3  
 4  # To make the pattern 10011001 there are 4 LEDs to turn on:
 5  #   0, 3, 4, 7
 6  
 7  # Set User LED bit number 0 to True (ON)
 8  leds.user_num(0, True)
 9  
10  # Now do the same for the other three LEDs
11  leds.user_num(3, True)
12  leds.user_num(4, True)
13  leds.user_num(7, True)
14  

Objective 3 - Basic Binary

Basic Binary
Wait a minute. Is all this binary stuff just "Gratuitous Educational Content?"

Comments are ignored by the computer - they're just for humans :-)
In Python, comments begin with #

This line gives your Python program access to CodeBot's hardware.

You are import ing from the botcore library module.
The "*" means import everything!

Just like in Objective 1, this turns user LED 0 ON.

Fill in the blanks for these 3 lines!

Replace the (...) with the right code to turn ON the other three LEDs.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 7 of 237



Absolutely not! I wouldn't do that to you!

The CodeBot LEDs really are controlled by a binary shift register.
AND the fastest way for your Python code to set the LEDs is directly in binary.

Instead of the leds.user_num(num, isOn) function, you can do the following:

# Set User LEDs with a binary pattern
leds.user(0b01100110)

The code above uses Python's literal binary notation.

Prefixing a number with 0b tells Python it's binary.
With no prefix naturally it's gonna assume a decimal number (base-10).

Sometimes there will be a single important concept to learn about.

Click this button to see an important concept in the CodeTrek:

Go ahead and test out this new API (Application Programming Interface).

Display some different binary numbers.
You can also give leds.user(val) decimal values.

CodeTrek:

1  from botcore import *
2  
3  # Light ALL the User LEDs
4  leds.user(0b11110111) 

5  

Goals:

Open the CodeTrek using the button in the instructions to learn a critical concept.

Complete this Objective by turning on ALL the User "BYTE" LEDS

Tools Found: Binary Numbers, CodeBot LEDs, Binary Shift Register, API

Solution:

1  from botcore import *
2  leds.user(0b11111111)

Quiz 1 - Enlightenment

Question 1: What is an API?

done It stands for "Application Programming Interface", describing how code interfaces with other code.

close The "Automatic Peripheral Interface". This is how keyboards and other devices automatically interface with cyberspace.

close Pronounced like "happy" without the H, it's the feeling you get when you fix a bug in your code.

CODETREK

This line of code uses the binary API to control the user LEDs.

A prefix of 0b followed by 1's and 0's is a binary value.
There are 8 LEDs, so you need 8 binary 1's.
This looks really close, but one of the digits is wrong. Fix it and run the code!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 8 of 237



Question 2: Which of the following are valid binary literals in Python?

done 0b0101

close 0b0002

close bin0101

done 0b11

Question 3: Assuming all LEDs are off to begin with, what is the equivalent binary form of the following?

leds.user_num(3, True)

done leds.user(0b00001000)

close leds.user(3)

close leds.user(0b00010000)

close leds.user(0b00000100)

Objective 4 - All the LEDs

All the LEDs
So far you've programmed 8 LEDs.

There are 9 more to go!

This code demonstrates the botcore API for the remaining CodeBot LEDs:

# Line sensor 0-4
leds.ls_num(0, True)  # Or binary: leds.ls(val)

# Proximity sensor 0-1
leds.prox_num(0, True)  # Or binary: leds.prox(val)

# USB
leds.usb(True)

# Power
leds.pwr(True)

Notice when there are multiple LEDs we always start numbering at 0.

Just like with the User LEDs, there's a matching binary API for the others also.
You'll soon learn about Python lists which also have indexes starting at 0.

Write code to Light ALL the LEDs!

CodeTrek:

 1  from botcore import *
 2  
 3  # User
 4  leds.user(0b11111111)
 5  
 6  # Line sensor 0-4
 7  

Add your code here

Get the rest of those LEDs shining!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 9 of 237



 8  
 9  # Proximity sensor 0-1
10  
11  # USB
12  
13  # Power
14  

Goals:

Light all the User LEDs

Light all the Line Sensor (ls) LEDS

Light the two Prox LEDs

Light the USB LED

Light the Power LED

Tools Found: CodeBot LEDs, Binary Numbers, list

Solution:

 1  from botcore import *
 2  
 3  # User
 4  leds.user(0b11111111)
 5  
 6  # Line sensor 0-4
 7  leds.ls(0b11111)
 8  
 9  # Proximity sensor 0-1
10  leds.prox(0b11)
11  
12  # USB
13  leds.usb(True)
14  
15  # Power
16  leds.pwr(True)

Objective 5 - Animation

Animation
You've mastered the basics of LEDs!

But wait. mood_bad
What about blinking LEDs?

...or dazzling sequences of scintillating light??

Animation - a sequence of changes, at a controlled speed.

Python executes each line of code in sequence, from top to bottom.
So you already have the sequence covered. The computer is just too FAST!
All the lights appear to come on at the same time...

Sloooow it down with the sleep(seconds) function from the time module:

from time import sleep  # You just need this line of code once!

sleep(0.5)  # Delay the program for 0.5 seconds

Now, armed with this new function, let's see you Animate those LEDs

I want to see at least one LED changing over time...
Blink at least twice to complete this objective!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 10 of 237



CodeTrek:

 1  from botcore import *
 2  from time import sleep 

 3  
 4  # Blink once
 5  leds.user(0b11111111) 

 6  sleep(1.0) 

 7  leds.user(0) 

 8  
 9  # TODO...  

10  
11  # Blink again
12  leds.user(0b11111111)
13  

Goal:

LED blink (on/off) with a time delay TWICE

Tools Found: LED, Time Module

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Blink once
 5  leds.user(0b11111111)
 6  sleep(1.0)
 7  leds.user(0)
 8  
 9  sleep(1.0)
10  
11  # Blink again
12  leds.user(0b11111111)
13  sleep(1.0)
14  leds.user(0)

Mission 4 - Get Moving
Get your motors running... Head out on the Virtual Highway!

Import the sleep() function from the time module.

Light some LEDs

Wait a second...

Change the LEDs!

Finish the code!

You need to wait a bit, then turn some LEDs back ON.
... then wait, and turn them OFF again!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 11 of 237



Objective 1 - Python Pirouette

Rotate in Place
A nice test for the motors is to rotate your robot.

CodeBot rotates when the wheels turn with equal power in opposite
directions.

The motors automatically stop when the program ends.

(Soon your programs won't end... they may loop forever!)

For your first programs, just call sleep() to let the motors run briefly.

Refer to the time module for more information on that!

Use the CodeTrek to see how the the motors API works:

CodeTrek:

 1  from botcore import *
 2  from time import sleep  

 3  
 4  # Enable the motors
 5  motors.enable(True)  

 6  
 7  # Apply 30% FORWARD power to the LEFT motor
 8  motors.run(LEFT, 30)
 9  
10  # Apply 30% REVERSE power to the RIGHT motor
11  motors.run(RIGHT, -30)  

12  
13  # Sleep while motors run... they stop when program ends!
14  sleep(5.0)  

Hints:

One wheel needs to have a (+) positive speed, and the other wheel should have exactly the same speed but (-) negative
direction.

It doesn't matter which wheel goes forward and which goes backwards.

Either one counts as a nice spin move!

Goal:

CODETREK

Get sleep() from Python's time module.

In this case you're not animating LEDs...
Instead, this is needed so you can run the motors for a specific time duration.

You have to enable() the motors before they'll move.

Run the specified motor at given power level: -100% to +100%

If you don't wait here, the motors will stop immediately when your program ends.

Pretty much before they've had a chance to start moving!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 12 of 237



Rotate your 'bot by turning the wheels in equal and opposite directions.

Tools Found: Motors, Loops, Time Module, API

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  motors.run(LEFT, 50)
 6  motors.run(RIGHT, -50)
 7  
 8  sleep(2.0)

Objective 2 - Circle Up

Circle Up
Can you write Python code to make CodeBot drive forward in a circle?

The wheels will need to move at different speeds.
How different will determine the diameter of your circle!

CodeTrek:

 1  from botcore import *
 2  # from ??? 

 3  
 4  # Start your engines!
 5  motors.enable(True)
 6  # motors.run(LEFT, ???)
 7  # motors.run(RIGHT, ???) 

 8  
 9  # Blink some LEDs
10  leds.user(0b00011000) 

11  sleep(2)
12  leds.user(0b11000011)
13  sleep(2)
14  leds.user(0)

Hints:

Both wheels need to move forward.

That means your motors.run() power will be +positive for both LEFT and RIGHT motors.

Blinking LEDs just means changing them, with some sleep() in between.

Besides botcore you need another import module here...

Fix this code so you can sleep() later!

Set power levels to move forward in a circle.

You decide how your bot's speed and how big the circle is!

Customize your flashing lights!

The motors are still running while you're blinking.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 13 of 237



Goals:

Drive the CodeBot forward in a circle

Blink some LEDs while moving!

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Start your engines!
 5  motors.enable(True)
 6  motors.run(LEFT, 30)
 7  motors.run(RIGHT, 40)
 8  
 9  # Blink some LEDs
10  leds.user(0b00011000)
11  sleep(2)
12  leds.user(0b11000011)
13  sleep(2)
14  leds.user(0)

Objective 3 - Robot Tag

Robot Tag Race
You have all the skills you need to complete the next Objective of this Mission!

It's simple mood
Write a Python program for CodeBot to touch all the tennis balls.
To make it a bit more challenging, there's a time limit.

30 seconds!
That's the maximum qualifying time for touching at least two of the tennis balls.

Use the RESET button on the Simulation Toolbar

This will reposition CodeBot and the tennis balls.
Try the Universal Camera to set an overhead view!
It's probably gonna take a few attempts...

Having trouble?

Check the emoji_objects Hint panel by clicking the icon below.

CodeTrek:

 1  # Robot Tag Race - Just ONE way to solve it...
 2  
 3  from botcore import *
 4  from time import sleep 

 5  
 6  motors.enable(True)  

 7  

You're going to need some library modules:

import botcore to access CodeBot's motors
import time so you can access sleep()

Don't forget to enable those motors!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 14 of 237



 8  # Drive to the 1st ball
 9  motors.run(LEFT, 60)
10  motors.run(RIGHT, 40)
11  sleep(2.5)
12  
13  # Adjust speeds and timing to reach the 2nd ball
14  # motors.run(LEFT, ??)
15  # motors.run(RIGHT, ??)
16  # sleep(??)
17  
18  # TODO: more code to reach the 3rd and 4th balls!
19  

20  

Hints:

Take it one ball at a time

Experiment to find motor speeds and sleep delay needed to hit the first ball.

Then add code to adjust speeds and another delay to hit the second one.

Notice your bot doesn't move exactly the same every time?

In real-life robotics, wheels are never perfectly round, and no surface is perfectly smooth.

Motors and gears will have slightly different efficiency and friction too.

In future projects you'll learn now to navigate accurately . Line Sensors and Wheel Encoders will provide the feedback
your 'bot needs to move precisely!

Goals:

Hit two tennis balls!

All within a 30 second timeout!

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  motors.run(LEFT, 60)
 6  motors.run(RIGHT, 40)
 7  sleep(2.5)
 8  
 9  motors.run(LEFT, 70)
10  motors.run(RIGHT, 50)
11  sleep(3.5)
12  
13  motors.run(LEFT, 70)
14  motors.run(RIGHT, 60)
15  sleep(2.5)
16  
17  motors.run(LEFT, 70)
18  motors.run(RIGHT, 55)
19  sleep(5.5)

Quiz 1 - Move Your Brain

Question 1: While executing the following code, which direction does CodeBot rotate?

There are many possible solutions!
Some are elegant, others more brute-force like the one shown here.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 15 of 237



from botcore import *
from time import sleep

motors.run(LEFT, 50)
motors.run(RIGHT, -50)
sleep(5)

done It doesn't rotate at all. You forgot to call motors.enable(True)

close Clockwise

close Counter-clockwise

Question 2: What does sleep(N) do?

done Pauses program execution for N seconds, so the program doesn't end and peripherals are still enabled.

close Commands the motors to run for the specified time interval N in seconds.

close Disables all peripherals and enters power save mode for N seconds.

Question 3: How is your Python code able to call the sleep() function?

done By importing it from the time module

close The sleep() function is a Python built-in, so it is always available.

close Everything must sleep() at some point. Even computers.

Question 4: Where does the motors.run() function come from?

done The motors object is part of the import botcore module.

close Python was created with CodeBot in mind from the beginning, so the motors object is always available to every Python program.

close Calling motors.enable() makes it available.

Objective 4 - Sound Off

Sound Off!
Okay, here's your final Objective to complete this Mission.

You've lit the CodeBot LEDs,
You mastered the motors,
It's time for you to make some SOUND with the speaker!

The API is pretty simple:

from botcore import *
from time import sleep

spkr.pitch(440)  # Play a 440Hz tone (concert pitch!)
sleep(1)    # hold the note...
spkr.off()  # Stop the music

3D Sound

You may need to use the camera controls to zoom-in near CodeBot to hear the sound better!

Not much to it

But with this simple capability you can create infinite melodies!
Experiment a little with high and low frequencies spkr.pitch(frequency)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 16 of 237



What's the lowest and highest audible frequency you can make?
Try playing two or more notes separated by sleep() delays.

Now you're making music!

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  spkr.pitch(440)  # Play a 440Hz tone (concert pitch!)
 5  sleep(1)    # hold the note...
 6  
 7  # TODO: Play another note 

 8  
 9  spkr.off()  # Stop the music

Goal:

Play two or more different notes separated only by delays

Tools Found: CodeBot LEDs, Motors, Speaker, API

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  spkr.pitch(440)  # Play a 440Hz tone (concert pitch!)
 5  sleep(1)    # hold the note...
 6  
 7  spkr.pitch(880)
 8  sleep(1)
 9  
10  spkr.off()  # Stop the music

Mission 5 - Dance Bot
Does CodeBot have what it takes to win a dance competition? Only your code can make it happen!

Objective 1 - Ah One-Two-Three!

You’ve gotta count your steps to hit those dance moves just right!

Create a new file!

Use the File → New File menu to create a new file called "dancebot.py"

Get Flashy

Say you want to flash User LED 0 exactly 8 times.

You could copy the same ON/OFF code 8 times to make it happen.
But that’s a lot of repetitive code!
Even worse, what about the extended-play version where you have to flash 40 times?

There has to be a better way…

Loops let you repeat a block of code.

Python has two kinds of loops: while and for. Here's an example loop:

Copy and modify the two lines above to play a different note!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 17 of 237



while count < 8:
    # blink an LED...
    count = count + 1

Note two important things here:

1. There is a colon : at the end of the line with while. That means a new block of code begins on the next line.
2. The code inside the loop is indented.

Keeping track of the count

So far your programs have run straight through, controlling motors, CodeBot LEDs and speaker.

You haven’t needed to store any information along the way.
But now you have to keep track of a "count" while your program runs!

Your program will need some memory to store "count" in.

That’s what variables are for!
You’ll be using a variable to keep track of count as you loop and blink the CodeBot LEDs.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  count = 0  

 5  
 6  # Blink User LED-0 exactly 8 times
 7  while count < 8: 

 8  
 9      # Blink LED 0 On/Off
10      leds.user_num(0, True)  

11      sleep(0.1)
12      leds.user_num(0, False)
13      sleep(0.1)
14  
15      # Add one to the count
16      count = count + 1  

This is how you declare a variable in Python!

Just use a valid variable name, and assign a value to it.
In this case, the initial value of count is 0

Your while condition: loop:

The loop will repeat while the condition is True
Since count starts at 0 you just need to add 1 to it each time through the loop.
...then when it hits 8 the loop will end!

Check out the indentation!

Use the TAB key to indent all the code you want to run inside the loop.
If it ain't indented, it ain't inside the loop!

Updating count inside your loop

It's very common for the new value to be based on the old value of a variable!

That's what is happening with this code.

"Add +1 to count, and store the result back in count."

Does it look odd to have count on both sides of the assignment statment?

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 18 of 237



17  

Goals:

Blink User LED 0 on and off 8 times.

Use a while loop in your program.

Tools Found: Loops, Indentation, Motors, CodeBot LEDs, Speaker, Variables

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Blink User LED-0 exactly 8 times
 5  count = 0
 6  while count < 8:
 7      print(count)
 8      leds.user_num(0, True)
 9      sleep(0.1)
10      leds.user_num(0, False)
11      sleep(0.1)
12      count = count + 1  # Gnarly!

Objective 2 - Enter the Debugger

Your code is getting more complex now!
With variables and loops in your toolbox, you have the capability to build much more powerful programs.

BUT, you can also easily create code that's hard to understand.
And of course, your code can have bugs!

If you read the background on debugging you'll know that a "bug" is when your program is not doing what you expected it to do.

But the computer is always doing what you told it to do!

What is the computer really doing?

To find out, trace through your code one step at a time. You can do this by reading over your program carefully, making some notes,
slowly "running" the program with your brain - like a human computer! But this can take time, like solving a hard puzzle. Fortunately
there are tools that can help:

As it runs, your program can print text messages about what it's doing.
Rather than pressing the play_arrowRUN button, you can press bug_reportDEBUG and have the computer step through your code.

As you step, you can inspect variables and interact on the console.
Click the menu button at the lower-right to open the console panel.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  count = 0
 5  

Just remember that everything to the right of the equals runs first.
So the assignment happens in two stages.

count starts at 0:

1. Do the right hand side: count + 1 → 0 + 1 → 1
2. Next, do the assignment: count ← 1

So after the update, count is 1.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 19 of 237



 6  # Blink User LED-0 exactly 8 times
 7  while count < 8:
 8  
 9      # Display the count on the debug console
10      print(count) 

11  
12      # Blink LED 0 On/Off
13      leds.user_num(0, True)
14      sleep(0.1)
15      leds.user_num(0, False)
16      sleep(0.1)
17  
18      # Add one to the count
19      count = count + 1
20  

Goals:

Display the running count on the console from 0 to 7.

Just print the numbers... no other text or spaces.

Step into your code with the CodeSpace Debugger.

First click bug_report then use the  button to step through your code.

Don't forget to watch your count variable in the menu console panel!

It will be under Globals

Tools Found: Variables, Loops, Debugging, Print Function, Advanced Debugging

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  count = 0
 5  
 6  # Blink User LED-0 exactly 8 times
 7  while count < 8:
 8  
 9      # Display the count on the debug console
10      print(count)
11  
12      # Blink LED 0 On/Off
13      leds.user_num(0, True)
14      sleep(0.1)
15      leds.user_num(0, False)
16      sleep(0.1)
17  
18      # Add one to the count
19      count = count + 1
20  

Quiz 1 - Dancin' Data

Question 1: Which two of the following are valid Python variable names?

done spam_eggs

The print() statement

Python's built-in print() function sends text output to the console.
Here you are using it in a very simple way, just printing a single integer.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 20 of 237



close Baker$Dozen

close 1fineday

done Number1

Question 2: What is printed by the following code?

i = 0
while i < 5:
    print(i, end=' ')
    i = i + 1

print('and', i)

done 0 1 2 3 4 and 5

close 0 1 2 3 4

close 1 2 3 4 and 5

close 0,1,2,3,4, and 5

Question 3: What is printed by the following code?

n = 15
n = n + 5
print('n= ', n)

done n= 20

close n= 5

close n= 15

close 20

Objective 3 - Iterate the Beat

Another type of loop

The for loop is made for looping across a range of numbers, or iterating over other kinds of sequences you will soon be learning
about.

Use the built-in range function to specify the sequence of numbers you need.

The for loop saves you the trouble of initializing and updating the loop variable
It automatically takes the next value from the sequence on each iteration through the loop.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Iterate the beat, with a for loop!
 5  for count in range(8): 

Here's your for loop

It iterates over range(8)
...meaning count will range from 0-7
It's automatically assigned the next value each time around the loop.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 21 of 237



 6      print(count)
 7      leds.user_num(0, True)
 8      sleep(0.1)
 9      leds.user_num(0, False)
10      sleep(0.1)
11      

Goals:

Blink User LED-0 on and off 8 times.

Display the running count on the console from 0 to 7.

You can only print the numbers... no other text or spaces.

Remove the while loop and use a for loop instead.

Tools Found: Loops, Iterable, Built-In Functions, Ranges, Variables, Readability

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Iterate the beat, with a for loop!
 5  for count in range(8):
 6      print(count)
 7      leds.user_num(0, True)
 8      sleep(0.1)
 9      leds.user_num(0, False)
10      sleep(0.1)

Objective 4 - Begin the Wave

Teach CodeBot a classic robot dance move

First you need to make the User LED sweep across from right (bit-0) to left (bit-7).

Your loop is counting from 0 to 7, so you’re nearly there already!

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Iterate the beat, with a for loop!
 5  for count in range(8):
 6      print(count)
 7      leds.user_num(count, True) 

 8      sleep(0.1)
 9      leds.user_num(count, False)
10      sleep(0.1) 

No need to update count

The for loop takes care of that!

Do something with count!

The LEDs are numbered 0-7, so count will be perfect here.

Do you really need to sleep() here?

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 22 of 237



Hints:

Use count as the LED number in the leds.user_num(num, is_on) function.

You don't need to sleep() at all after you turn the LED off.

There's always an LED shining in this animated display!

Goals:

Use a for loop in your program.

Sweep a single User LED from right to left.

The sequence must be:

1. LED-0 on and all other User LEDs off
2. LED-1 on and all other User LEDs off

...

8. LED-7 on and all other User LEDs off

Tools Found: Loops, CodeBot LEDs

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Iterate the beat, with a for loop!
 5  for count in range(8):
 6      print(count)
 7      leds.user_num(count, True)
 8      sleep(0.1)
 9      leds.user_num(count, False)
10      # sleep(0.1)
11  

Objective 5 - Complete the Wave

Now you’ll need to add code to make the LED "sweep back" the other direction.

Can you make a for loop count backwards?

Of course you can! It’s Python 😊
Check out the power of the range tool. It has what you need.

The full range function: range(start, stop, step)

start and step are both optional arguments

Watch the count-up and count-down on the Console.

Is the program doing what you expect?

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Iterate the beat, with a for loop!

Sometimes the best improvement is to delete a line of code!

There's always an LED on in this dance...

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 23 of 237



 5  for count in range(8):
 6      print(count)
 7      leds.user_num(count, True)
 8      sleep(0.1)
 9      leds.user_num(count, False)
10  
11  for count in range(6, -1, -1): 

12      print(count)
13      leds.user_num(count, True)
14      sleep(0.1)
15      leds.user_num(count, False)

Hint:

Counting Down Tips:

Start at 6

Stop at -1 → because range() does not include the stop value.

Step by -1

Goals:

Add a second for loop to your program.

Sweep the LED from right (LED-0) to left (LED-7) and then from left to right.

Display the running count on the console from 0 to 7 and then back to 0.

Just print the numbers... no other text or spaces.

7 should be printed once only as you sweep from left to right.

Tools Found: Loops, Ranges, Default function parameters, Print Function

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Iterate the beat, with a for loop!
 5  for count in range(8):
 6      print(count)
 7      leds.user_num(count, True)
 8      sleep(0.1)
 9      leds.user_num(count, False)
10  
11  for count in range(6, -1, -1):
12      print(count)
13      leds.user_num(count, True)
14      sleep(0.1)
15      leds.user_num(count, False)
16  

A down-counting for loop!

The range() has a step = -1
So count will decrease by 1 each time around the loop.

warning Warning:
The start and stop values above may not be exactly right. Debug this
to make sure you are meeting all the Goals.

Observing your print() statements on the console will help.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 24 of 237



Objective 6 - Funky Functions

You need to add some movement to that flashy wave!

That means controlling the motors.

For this dance the LED sweeps will pace your movement.

Your dance algorithm is:

1. Wait for BTN-0 to be pressed
2. Start moving
3. Sweep the LEDs
4. Change movement
5. Sweep the LEDs
6. Change movement
7. Sweep the LEDs
8. …and so on!

You could just copy your "sweep" code over and over, in between motor commands…

But that would add a lot of redundant code. The solution?

You can package your code into functions!

Dive into your Toolbox to learn more, then you'll be ready to complete this Objective!

Text Editing Tip: When you're moving code around you may want to use the Editor Shortcuts.

First step: Re-write your existing "sweep" code.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Define functions to sweep left and right
 5  def sweep_left(): 

 6      for count in range(8):
 7          print(count)
 8          leds.user_num(count, True)
 9          sleep(0.1)
10          leds.user_num(count, False)
11      

12  
13  def sweep_right(): 

Define a function to sweep left:

def means "define function".
Function names follow the same rules as variables.
The parameters are inside parenthesis.

You have no parameters, but still gotta have parenthesis!
End the line with a colon - which is always followed by an indented block of code.

This is your first loop from the last Objective.

It must be indented beneath the function def.
Standard Python indentation style is 4-characters (use the TAB key!)
Notice the helpful vertical lines showing indentation levels.

Indentation must be neat and consistent!

Tip: Select a block of code and press SHIFT-TAB to indent it.

Define a function to sweep right:

Just like you did above...

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 25 of 237



14      for count in range(6, -1, -1):
15          print(count)
16          leds.user_num(count, True)
17          sleep(0.1)
18          leds.user_num(count, False)
19  
20  # Call the functions 
21  sweep_left()
22  sweep_right() 

23  
24  

Goals:

Define a sweep_left() function.

Define a sweep_right() function.

Call your new sweep_left() function.

Call the sweep_right() function after the sweep_left() function.

Verify your LEDs sweep from right → left → right just like before.

Tools Found: Motors, Algorithm, Functions, Editor Shortcuts, Divide and Conquer

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  def sweep_left():
 5      # Iterate the beat, with a for loop!
 6      for count in range(8):
 7          print(count)
 8          leds.user_num(count, True)
 9          sleep(0.1)
10          leds.user_num(count, False)
11  
12  def sweep_right():
13      for count in range(6, -1, -1):
14          print(count)
15          leds.user_num(count, True)
16          sleep(0.1)
17          leds.user_num(count, False)
18  
19  sweep_left()
20  sweep_right()

Quiz 2 - Extending your range

Question 1: What is printed by the following code?

for x in range(4):
    print(x, end=',')

done 0,1,2,3,

Note: When you define a function, the code it contains doesn't actually run until you call it later.

Finally call the functions you defined above.

Notice even though you have no arguments to pass to these functions, you must still use parenthesis.
That's how Python knows it's a function call.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 26 of 237



close 1,2,3,4,

close 0,1,2,3,4,

Question 2: What is printed by the following code?

for x in range(10, 1, -1):
    print(x, end=',')

done 10,9,8,7,6,5,4,3,2,

close 10,9,8,7,6,5,4,3,2,1,

close 9,8,7,6,5,4,3,2,1,

Question 3: What does the following program do?

from botcore import *
from time import sleep

def spin(speed, duration):
    motors.run(LEFT, speed)
    motors.run(RIGHT, -speed)
    sleep(duration)

motors.enable(True)
spin(50, 5)

done Spins CodeBot clockwise at 50% power for 5 seconds

close Spins CodeBot counter-clockwise at 50% power for 5 seconds

close Nothing. Motors are not enabled when function is called.

Objective 7 - Just Waiting for a Button

Okay, just one more thing before you rev up those dancin’ motors…

You’re supposed to wait for someone to press button BTN-0 before moving.

Your code will need to loop while checking BTN-0.
Display your flashy wave while you wait!

Check out the CodeBot buttons to see how your code can check the state of BTN-0 and BTN-1.

Use a loop to wait while checking for a button press.

Keep looping as long as BTN-0 was not pressed.
Inside the loop, call your sweep_left() and sweep_right() functions.

For now, just let the program END when BTN-0 is pressed!

Tip: You can click BTN-0 on CodeBot in the 3D window...

But Keyboard 0 on your PC will also activate BTN-0 after you click in the 3D view.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  def sweep_left():
 5      for count in range(8):
 6          print(count)
 7          leds.user_num(count, True)
 8          sleep(0.1)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 27 of 237



 9          leds.user_num(count, False)
10  
11  def sweep_right():
12      for count in range(6, -1, -1):
13          print(count)
14          leds.user_num(count, True)
15          sleep(0.1)
16          leds.user_num(count, False)
17  
18  while not buttons.was_pressed(0):
19      sweep_left()
20      sweep_right() 

21  

Hint:

Click BTN-0 in the 3D view to simulate a button press.

You can also press the 0 or 1 keys on your keyboard to press your 'bots buttons!

Goal:

Continuously sweep LEDs left and right until BTN-0 is pressed using the not operator.

Tools Found: Buttons, Loops, Logical Operators

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  def sweep_left():
 5      # Iterate the beat, with a for loop!
 6      for count in range(8):
 7          print(count)
 8          leds.user_num(count, True)
 9          sleep(0.1)
10          leds.user_num(count, False)
11  
12  def sweep_right():
13      for count in range(6, -1, -1):
14          print(count)
15          leds.user_num(count, True)
16          sleep(0.1)
17          leds.user_num(count, False)
18  
19  while not buttons.was_pressed(0):
20      sweep_left()
21      sweep_right()

Objective 8 - Beautiful Moves!

Add some movement to your dance

You already know how to control the motors.

Previously you used sleep() for pacing to control how long the motors go at a certain speed.
Now instead of just sleeping, you can sweep your LEDs while moving.

After all, dancing is just moving with style!

Your new while loop.

Be sure to indent the function calls so they're both inside the loop.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 28 of 237



It’s dance competition time!
Make your best dance moves after the button is pressed!

You'll need to touch some balloons as you sweep across the stage.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  def sweep_left():
 5      for count in range(8):
 6          print(count)
 7          leds.user_num(count, True)
 8          sleep(0.1)
 9          leds.user_num(count, False)
10  
11  def sweep_right():
12      for count in range(7, -1, -1):
13          print(count)
14          leds.user_num(count, True)
15          sleep(0.1)
16          leds.user_num(count, False)
17  
18  while not buttons.was_pressed(0):
19      sweep_left()
20      sweep_right()
21  
22  # Motor up!
23  motors.enable(True) 

24  
25  # Function to move motors
26  def go(left, right):
27      motors.run(LEFT, left)
28      motors.run(RIGHT, right) 

29  
30  # Function to sweep left-right N times
31  def sweep(num):
32      for i in range(num):
33          sweep_left()
34          sweep_right() 

35  
36  # Turn a bit to the left
37  go(-10,10)
38  sweep(1)  

Dancers, start your engines!

No movement yet... but your motors are enabled!

A convenience function

You could call motors.run() over and over again as you dance...
But this will save you some typing!

Another helpful function to sweep while you move

You will be using sweep_left() and sweep_right() to time your moves.
Just tell this function how many sweep cycles ya want!

Feel free to experiment here.

This is your dance after all!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 29 of 237



39  
40  # Make a big clockwise circle
41  go(??, ??)
42  sweep(8)  

43  
44  # Pirouette for style points
45  go(-80, 80)
46  sweep(2)
47  
48  # More movement needed?
49  

50  

Hints:

Test a Lot!

Each time you test this code you will:

1. Hit the RESET button on the Scene Toolbar,
2. Press play_arrow RUN,
3. Press BTN-0 on your CodeBot. (You can click in the 3D window and use keyboard '0' to do this)

Take it one move at a time

First, try just making one turn.

Did you get pointed in a good direction?

Adjust your code and test again!

Once you're happy with the first move, go to the next!

Goals:

Touch at least 5 balloons as you sashay around the stage!

Dance across the stage to meet your Balloon goal within 30 seconds

Keep that LED Wave going!

Tools Found: Motors, Time Module

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  def sweep_left():
 5      # Iterate the beat, with a for loop!
 6      for count in range(8):
 7          print(count)
 8          leds.user_num(count, True)
 9          sleep(0.1)

(but I found that turning a bit helped set my 'bot up for an elegant arc)

Choose your speeds

You'll probably need to move pretty fast to get across the stage!

Your move!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 30 of 237



10          leds.user_num(count, False)
11  
12  def sweep_right():
13      for count in range(7, -1, -1):
14          print(count)
15          leds.user_num(count, True)
16          sleep(0.1)
17          leds.user_num(count, False)
18  
19  while not buttons.was_pressed(0):
20      sweep_left()
21      sweep_right()
22  
23  # Motor up!
24  motors.enable(True)
25  
26  # Function to move motors
27  def go(left, right):
28      motors.run(LEFT, left)
29      motors.run(RIGHT, right)
30  
31  # Function to sweep left-right N times
32  def sweep(num):
33      for i in range(num):
34          sweep_left()
35          sweep_right()
36  
37  # Turn a bit to the left
38  go(-10,10)
39  sweep(1)
40  
41  # Make a big clockwise circle
42  go(100, 80)
43  sweep(8)
44  
45  # Pirouette for style points
46  go(-80, 80)
47  sweep(2)
48  

Mission 6 - Robot Metronome
Write code to make a time-keeping Python Maestro!

Objective 1 - Flash! Ah-ahh!

Create a new file!

Use the File🡪 New File menu to create a new file called "metronome.py"

The first step in creating your metronome:

Flash the User LEDs on and off at a specific rate!

In musical terms, this rate is called the "tempo".
Music tempo is given in BPM, which stands for Beats per Minute.
So if you flash the LEDs once every second, that’s 60 BPM baaaby.

Wait – what does "flash" mean anyway? How long should the LEDs stay on?

Long enough to be visible, but short enough to punctuate the beat.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Flash the red User LEDs
 5  leds.user(0b11111111)
 6  # Pause long enough to see the beat
 7  sleep(0.1)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 31 of 237



 8  # Turn off lights
 9  leds.user(0)

Hint:

Use sleep(0.1) to delay for one tenth of a second.

Goal:

Turn all the User LEDs on for a tenth of a second, then back off.

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Flash the red User LEDs
 5  leds.user(0b11111111)
 6  # Pause long enough to see the beat
 7  sleep(0.1)
 8  # Turn off lights
 9  leds.user(0)

Objective 2 - Metro Beat

Now it’s time to add some sound to your metronome.

Use the CodeBot speaker to play a pitch during your LED flash.
Remember to turn the spkr.off() when you turn the LEDs off!

What’s the frequency, Kenneth?

Well, I think a G above middle C would be nice. That’s 784 Hz.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Turn on the red user LEDs
 5  leds.user(0b11111111)
 6  
 7  # TODO: Turn on the speaker to hear a tone

 8  
 9  # Pause long enough to see/hear the beat
10  sleep(0.1)
11  
12  # TODO: Turn off the speaker

13  
14  # Turn off the user LEDs
15  leds.user(0)

Goal:

Add a beep to your metronome flash code.

Tools Found: Speaker

Turn the speaker on to a freq of your choice. Use the spkr.pitch(freq) function!

Don't forget to turn the speaker off.  It's as simple as spkr.off()!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 32 of 237



Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Flash the red User LEDs
 5  leds.user(0b11111111)
 6  # Beep on the Beat!
 7  spkr.pitch(784)
 8  # Pause long enough to see/hear the beat
 9  sleep(0.1)
10  # Turn off sound and lights
11  spkr.off()
12  leds.user(0)
13  
14  sleep(0.1)
15  
16  # TODO: Metronome needs to repeat the beat! ...indefinitely!

Objective 3 - Loop the Beat

So now you can mark the beat with lights and sound.

But what about the tempo?
You need to repeat the beat at exactly the right interval to achieve the desired BPM.

If you’re going for 60 BPM that means you repeat every 1 second.

You can use an infinite loop!

You need to move your flash/beep code inside a loop.

In Python the usual way to code an infinite loop is:

while True:
# beep and flash
# pause to maintain desired tempo

Note two important things here:

1. There is a colon (:) at the end of the line with while. That means a new block of code begins on the next line.
2. The beep/flash/pause code is indented on the next lines following the while True: Indentation is how you tell Python what

belongs inside the loop.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  while True:  

 5      # Flash the red User LEDs
 6      leds.user(0b11111111)
 7      # Beep on the Beat!
 8      spkr.pitch(784)
 9      # Pause long enough to see/hear the beat
10      sleep(0.1)
11      # Turn off sound and lights
12      spkr.off()
13      leds.user(0)    

Your infinite loop

Everything indented beneath this loop will repeat forever.

Indent your beep/flash code so it's inside the while loop.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 33 of 237



14  
15      # Pause to maintain the tempo
16      sleep(???)  # 60 BPM
17      

18  

Hint:

If you’re having trouble, try stepping through the code using the debugger.

Goal:

Move your code inside an infinite loop, so it runs forever at 60 BPM.

Use the editor shortcuts to make this easier!

Tools Found: Time Module, Loops, Indentation, Editor Shortcuts

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  while True:
 5      # Flash the red User LEDs
 6      leds.user(0b11111111)
 7      # Beep on the Beat!
 8      spkr.pitch(784)
 9      # Pause long enough to see/hear the beat
10      sleep(0.1)
11      # Turn off sound and lights
12      spkr.off()
13      leds.user(0)
14  
15      # Pause to maintain the tempo
16      sleep(1.0)  # 60 BPM

Objective 4 - Tighten up the Tempo

This project is starting to come together!

You have a pretty good metronome already… but there are some problems:

1. The tempo is not exactly 60 bpm.

The “flash” time adds 0.1 second delay, so the tempo is really: 

Tempo = 

2. Each time you want to change the tempo, you must calculate a new delay and modify the code.
You’re going to add the capability to adjust the tempo, so this needs to be automatic!

There are two numbers in your code that a user might want to vary: tempo, and beat_duration.

Instead of putting those literal numbers throughout your program, you should make them variables.

Select the block of code and press SHIFT-TAB to do this easily!

Add a delay to set the tempo

How many seconds to delay?
What's 1/60 of a minute?

Make sure your sleep() is also indented inside the loop!

​ ⋅ ​1min
60sec

1.1sec
1beat

​ = 54.5bpm(1.1)
60

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 34 of 237



Then you can calculate the "pause" time after each beat: pause = 60 / tempo – beat_duration

NOTE: you can use parenthesis to make it clearer that the division happens before subtraction:
pause = (60 / tempo) - beat_duration

But actually it works properly as shown due to the precedence rules.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 60
 5  beat_duration = 0.1
 6  
 7  while True:
 8      # Flash the red User LEDs
 9      leds.user(0b11111111)
10      # Beep on the Beat!
11      spkr.pitch(784)
12      # Pause long enough to see/hear the beat
13      sleep(beat_duration)
14      # Turn off sound and lights
15      spkr.off()
16      leds.user(0)
17  
18      # Pause to maintain the tempo
19      pause = 60 / tempo - beat_duration
20      sleep(pause)

Hint:

If you're on a slow computer, smaller sleep() delays can be inaccurate.

This might prevent you from achieving the accurate BPM needed to pass this objective!

Try increasing the beat_duration to 0.2 seconds if you think that might be happening.

Goals:

Add a variable called tempo

Add a variable called beat_duration

Adjust the "pause" between beats so it accurately accounts for the beat_duration.

I'll watch it over a 5-second interval to be sure!

Tools Found: Variables, Math Operators

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 60
 5  beat_duration = 0.1
 6  
 7  while True:
 8      # Flash the red User LEDs
 9      leds.user(0b11111111)
10      # Beep on the Beat!
11      spkr.pitch(784)
12      # Pause long enough to see/hear the beat
13      sleep(beat_duration)
14      # Turn off sound and lights
15      spkr.off()
16      leds.user(0)
17  
18      # Pause to maintain the tempo

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 35 of 237



19      pause = 60 / tempo - beat_duration
20      sleep(pause)

Quiz 1 - Variables

Question 1: Which two of the following are valid variable names?

close 1beep

done beepTime

done delay_beep

close beep$_duration

Question 2: The following “blink” code is broken! The LEDs never turn off. Why?

while True:
    leds.user(0b11111111)
    sleep(0.1)
leds.user(0)
sleep(1.0)

done The code to turn LEDs off and delay is not indented, so it’s outside the infinite loop and it never runs.

close The sleep(1.0) when LEDs are off is not long enough.

close The leds.user(0) function argument should be 0b00000000 instead.

Question 3: What is the value of delay after the following statement: delay = 99 + 1 / 10?

done 99.1

close 99

close 100

close 10

close 10.0

Objective 5 - Sound Control

Now it’s time to start adding user controls to your metronome.

The first controllable feature will be to toggle the sound ON and OFF: a "mute button"

Each time the button is pressed, the state of your program changes:
sound_on = True → sound_on = False

Your program has state? Yes! Stop your program at any point in time and what does it know?

The tempo
The beat_duration

Every moment your loop is running, it has those variables in memory.

Enable Sound: True or False?

Before you worry about detecting a button press, ask yourself:

Q. What state do I want the button to change?

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 36 of 237



A. The "Sound is Enabled" state!

So before you hook up the button, add a "sound is enabled" state to your code.

Initialize the variable to a Boolean True like so: sound_on = True
Now you can use the variable to control whether or not the sound actually plays!
To do that, you’ll need a control flow statement.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 60
 5  beat_duration = 0.1
 6  sound_on = True  

 7  
 8  while True:
 9      # Flash the red User LEDs
10      leds.user(0b11111111)
11      
12      # Beep on the Beat!
13      if sound_on:
14          spkr.pitch(784) 

15          
16      # Pause long enough to see/hear the beat
17      sleep(beat_duration)
18      # Turn off sound and lights
19      spkr.off()
20      leds.user(0)
21  
22      # Pause to maintain the tempo
23      pause = 60 / tempo - beat_duration
24      sleep(pause)

Hint:

Try initializing sound_on = False to see if this actually works!

Your metronome should run silently in this case.

Goals:

Add a variable called sound_on above your while loop.

Use the sound_on variable in an if statement to control the speaker.

Tools Found: State, Variables, bool, Branching

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 60
 5  beat_duration = 0.1
 6  sound_on = True

Your new state variable.

Initialize to True so the sound is ON by default.

Just a simple if statement is needed.

Now the sound is controlled by a variable!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 37 of 237



 7  
 8  while True:
 9      # Flash the red User LEDs
10      leds.user(0b11111111)
11      
12      # Beep on the Beat!
13      if sound_on:
14          spkr.pitch(784)
15          
16      # Pause long enough to see/hear the beat
17      sleep(beat_duration)
18      # Turn off sound and lights
19      spkr.off()
20      leds.user(0)
21  
22      # Pause to maintain the tempo
23      pause = 60 / tempo - beat_duration
24      sleep(pause)

Objective 6 - Mute Button

The API for CodeBot buttons consists of just two functions:

1. buttons.was_pressed(n)
2. buttons.is_pressed(n)

See the CodeBot buttons tool to explore the differences between these two functions.

Also notice that they both return a True or False bool value.
Be sure to read about this data type.

Add another if statement

You already have code that controls the speaker based on sound_on.

Now, add a new if statement that checks for a button press!

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 60
 5  beat_duration = 0.1
 6  sound_on = True
 7  
 8  while True:
 9      # Flash the red User LEDs
10      leds.user(0b11111111)
11  
12      # Check "mute" button
13      if buttons.was_pressed(0):
14          sound_on = False  

15  
16      # Beep on the Beat!
17      if sound_on:
18          spkr.pitch(784)
19          
20      # Pause long enough to see/hear the beat
21      sleep(beat_duration)
22      # Turn off sound and lights
23      spkr.off()
24      leds.user(0)
25  
26      # Pause to maintain the tempo

This is a new if statement.

Use it to control the sound_on state when a button is pressed.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 38 of 237



27      pause = 60 / tempo - beat_duration
28      sleep(pause)

Hints:

You can directly use a bool as the if statement expression: if buttons.was_pressed(0):

It’s okay if you can’t yet re-enable the sound.

Just stop and restart your program to test it again for now…

Goal:

Use the buttons.was_pressed(0) function to set sound_on = False if BTN-0 was pressed.

Demonstrate by pressing BTN-0 after 5 beeps.

Tools Found: Buttons, bool, Data Types, Speaker

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 60
 5  beat_duration = 0.1
 6  sound_on = True
 7  
 8  while True:
 9      # Flash the red User LEDs
10      leds.user(0b11111111)
11  
12      # Check "mute" button
13      if buttons.was_pressed(0):
14          sound_on = False
15  
16      # Beep on the Beat!
17      if sound_on:
18          spkr.pitch(784)
19          
20      # Pause long enough to see/hear the beat
21      sleep(beat_duration)
22      # Turn off sound and lights
23      spkr.off()
24      leds.user(0)
25  
26      # Pause to maintain the tempo
27      pause = 60 / tempo - beat_duration
28      sleep(pause)

Objective 7 - Un-Mute

Okay, it would be nice if BTN-0 could turn the sound back ON when pressed again.

Can you make it toggle ON/OFF like a light switch?
"If it’s OFF turn it ON. If it’s ON turn it OFF."

When the button is pressed, you need to flip the True/False value of sound_on.

Python has a logical operator made just for that purpose: the not operator.
It converts True to False, and vice versa.
It is a unary operator that goes in front of a Boolean expression, similar to a (-) sign for numeric expressions.

So, when sound_on is True → not sound_on will be False!

And (this might blow your mind):

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 39 of 237



You can not the current value, and store it right back in the same variable like this:

sound_on = not sound_on

In the above statement the key thing to realize is:

The right-hand side of the assignment statement executes first
...before the resulting value is assigned to the variable on the left-hand side.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 60
 5  beat_duration = 0.1
 6  sound_on = True
 7  
 8  while True:
 9      # Flash the red User LEDs
10      leds.user(0b11111111)
11  
12      # Check "mute" button
13      if buttons.was_pressed(0):
14          # Toggle sound ON/OFF
15          sound_on = ???   

16  
17      # Light PWR LED when muted
18      leds.pwr(???)  

19  
20      # Beep on the Beat!
21      if sound_on:
22          spkr.pitch(784)
23          
24      # Pause long enough to see/hear the beat
25      sleep(beat_duration)
26      # Turn off sound and lights
27      spkr.off()
28      leds.user(0)
29  
30      # Pause to maintain the tempo
31      pause = 60 / tempo - beat_duration
32      sleep(pause)

Hints:

Use your logical not skills to toggle the value when a button is pressed:

# Toggle a boolean value
value = not value

For the PWR LED, you don't need to toggle a variable.

Just use not to flip the value before it's passed to leds.pwr()

Goals:

Toggle the sound_on variable.

Don't just set it to False...
Instead set it to not what it was before!

The PWR LED turns ON when you call leds.pwr(True)

This is the "Muted" indicator light.
So if you wrote leds.pwr(sound_on) then it would be the opposite of what you want.

Is there an operator you can insert before sound_on that will flip the value?

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 40 of 237



Change your sound_on = False code when the button-press is detected to toggle the current sound_on value instead.

Turn on the PWR LED whenever the sound is muted.

Demonstrate by pressing BTN-0 after 5 beeps.

Tools Found: Logical Operators, Unary and Binary Operators, bool, Variables

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 60
 5  beat_duration = 0.1
 6  sound_on = True
 7  
 8  while True:
 9      # Flash the red User LEDs
10      leds.user(0b11111111)
11  
12      # Check "mute" button
13      if buttons.was_pressed(0):
14          # Toggle sound ON/OFF
15          sound_on = not sound_on
16  
17      # Light PWR LED when muted
18      leds.pwr(not sound_on)
19  
20      # Beep on the Beat!
21      if sound_on:
22          spkr.pitch(784)
23          
24      # Pause long enough to see/hear the beat
25      sleep(beat_duration)
26      # Turn off sound and lights
27      spkr.off()
28      leds.user(0)
29  
30      # Pause to maintain the tempo
31      pause = 60 / tempo - beat_duration
32      sleep(pause)

Objective 8 - Tempo List

It’s time to turn your attention to the final feature of this Mission:

Use BTN-1 to change the tempo and show the current selection (0 - 4) on the LS LEDs.

That means you will need another variable to track which of the 5 tempos is selected.

A variable called tempo_select that ranges from 0 - 4 would be perfect for this.
Use the bit-shift operator << to light the LS LED based on the selection.

What 5 tempos do you need?

A quick call to the Band Director revealed the following:
Largo (50bpm), Adagio (70bpm), Andante (100bpm), Allegro (140bpm), Presto (180bpm)

So that’s your list of tempos!

How can you code a list of things in Python?

Python's list data type!

Just put your list of tempos in square brackets like so:

tempo_list = [50, 70, 100, 140, 180]

Check out the list tool to see how to access the items in the list.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 41 of 237



Your tempo_select variable will be the index into this list, pointing to the currently selected tempo.

Since lists start with index 0, make that the initial value of tempo_select.
So now the tempo variable is set by reading the selected value from the list, like so:

tempo = tempo_list[tempo_select]

At this point you haven’t hooked up the button press to select the tempo yet, but your program has all the state you’ll need to make
it happen.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo_list = [50, 70, 100, 140, 180] 

 5  tempo_select = 0  

 6  tempo = 60
 7  beat_duration = 0.1
 8  sound_on = True
 9  
10  while True:
11      # Flash the red User LEDs
12      leds.user(0b11111111)
13  
14      # Check "mute" button
15      if buttons.was_pressed(0):
16          # Toggle sound ON/OFF
17          sound_on = not sound_on
18  
19      # Light PWR LED when muted
20      leds.pwr(not sound_on)
21  
22      # Beep on the Beat!
23      if sound_on:
24          spkr.pitch(784)
25          
26      # Pause long enough to see/hear the beat
27      sleep(beat_duration)
28      # Turn off sound and lights
29      spkr.off()
30      leds.user(0)
31  
32      # Show current tempo selection on LS LEDs
33      leds.ls(1 << tempo_select)  

34  
35      # Pause to maintain the tempo
36      tempo = tempo_list[tempo_select] 

Your new Python list!

Lists can contain items of any data type
You just need 5 integers for your tempo_list

A new variable to track which item in tempo_list is selected.

Later you can use this as the [ index ] into your list.

You'll be setting the Line Sensor LEDs leds.ls() with a binary value:

A value of 0b00001 sets the first LED (LS-0)
Shifting this left by tempo_select will light up the LED corresponding to that tempo.

Choose Your Tempo

Use tempo_select as an index into your list.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 42 of 237



37      pause = 60 / tempo - beat_duration
38      sleep(pause)

Goals:

Define a list of tempos named tempo_list

Define a variable tempo_select

This is your list index, initially set to 0

...the 0th item is the first one in your list!

Light the LS LED corresponding to the currently selected tempo_select

Tools Found: Variables, Bitwise Operators, list, State

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo_list = [40, 70, 100, 140, 180]
 5  tempo_select = 0
 6  tempo = 60
 7  beat_duration = 0.1
 8  sound_on = True
 9  
10  while True:
11      # Flash the red User LEDs
12      leds.user(0b11111111)
13  
14      # Check "mute" button
15      if buttons.was_pressed(0):
16          # Toggle sound ON/OFF
17          sound_on = not sound_on
18  
19      # Light PWR LED when muted
20      leds.pwr(not sound_on)
21  
22      # Beep on the Beat!
23      if sound_on:
24          spkr.pitch(784)
25          
26      # Pause long enough to see/hear the beat
27      sleep(beat_duration)
28      # Turn off sound and lights
29      spkr.off()
30      leds.user(0)
31  
32      # Show current tempo selection on LS LEDs
33      leds.ls(1 << tempo_select)
34  
35      # Pause to maintain the tempo
36      tempo = tempo_list[tempo_select]
37      pause = 60 / tempo - beat_duration
38      sleep(pause)

Quiz 2 - Bitwise shift, not, and lists

Question 1: What's the value of tempo after the following bit-shift statement?

tempo = 1 << 3

done 0b01000

Remember, list indexing starts with 0
So your initial value tempo_list[0] is 50 bpm

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 43 of 237



close 0b00100

close 0b10000

Question 2: What's the value of sound_on after the following code runs?

sound_on = True
sound_on = not sound_on

done False

close True

close not

Question 3: What is the value of tempo_list[1] ?

tempo_list = [50, 70, 100, 140, 180]

done 70

close 50

close 100

close 140

close 180

Objective 9 - Tempo Select

Now to hook BTN-1 up to your tempo_select index variable

If BTN-1 was pressed, change to the next tempo.

You can do that by adding 1 to the tempo_select variable.

tempo_select = tempo_select + 1

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo_list = [40, 70, 100, 140, 180]
 5  tempo_select = 0
 6  tempo = 60
 7  beat_duration = 0.1
 8  sound_on = True
 9  
10  while True:
11      # Flash the red User LEDs
12      leds.user(0b11111111)
13  
14      # Check "mute" button
15      if buttons.was_pressed(0):
16          # Toggle sound ON/OFF
17          sound_on = not sound_on
18  
19      # Light PWR LED when muted
20      leds.pwr(not sound_on)
21  
22      # Beep on the Beat!
23      if sound_on:
24          spkr.pitch(784)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 44 of 237



25          
26      # Pause long enough to see/hear the beat
27      sleep(beat_duration)
28      # Turn off sound and lights
29      spkr.off()
30      leds.user(0)
31  
32      # Select Tempo
33      if buttons.was_pressed(1):
34          tempo_select = tempo_select + 1 

35  
36      # Show current tempo selection on LS LEDs
37      leds.ls(1 << tempo_select)
38  
39      # Pause to maintain the tempo
40      tempo = tempo_list[tempo_select]
41      pause = 60 / tempo - beat_duration
42      sleep(pause)

Hints:

You will encounter an Error! Do not despair...

Step through your code and watch the tempo_select count up to oblivion!

Goal:

When BTN-1 was pressed, increase the tempo to the next value in tempo_list.

You should see the LS LED for each index lighting up as the tempo increases!

Tools Found: Variables

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo_list = [40, 70, 100, 140, 180]
 5  tempo_select = 0
 6  tempo = 60
 7  beat_duration = 0.1
 8  sound_on = True
 9  
10  while True:
11      # Flash the red User LEDs
12      leds.user(0b11111111)
13  
14      # Check "mute" button
15      if buttons.was_pressed(0):
16          # Toggle sound ON/OFF
17          sound_on = not sound_on
18  
19      # Light PWR LED when muted
20      leds.pwr(not sound_on)
21  
22      # Beep on the Beat!
23      if sound_on:
24          spkr.pitch(784)
25          
26      # Pause long enough to see/hear the beat

Increment tempo_select

That means add 1 to it.

Add one to the current value, and assign the result back to tempo_select

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 45 of 237



27      sleep(beat_duration)
28      # Turn off sound and lights
29      spkr.off()
30      leds.user(0)
31  
32      # Select Tempo
33      if buttons.was_pressed(1):
34          tempo_select = tempo_select + 1
35  
36      # Show current tempo selection on LS LEDs
37      leds.ls(1 << tempo_select)
38  
39      # Pause to maintain the tempo
40      tempo = tempo_list[tempo_select]
41      pause = 60 / tempo - beat_duration
42      sleep(pause)

Objective 10 - Wrapping the Metronome

Okay, time to fix that Bug!

When your tempo_select goes past the end of your list, you should set it back to 0.

An if statement is a nice way to do this:

if tempo_select > 4:
tempo_select = 0

But wait!

That 4 is a magic number in your code, and that kind of magic always leads to trouble.
For instance if later you add a couple more tempo values to your list, you might forget to change the number.

The solution is to use Python's built-in function len() which will always give you the exact number of items in the list!

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo_list = [40, 70, 100, 140, 180]
 5  tempo_select = 0
 6  tempo = 60
 7  beat_duration = 0.1
 8  sound_on = True
 9  
10  while True:
11      # Flash the red User LEDs
12      leds.user(0b11111111)
13  
14      # Check "mute" button
15      if buttons.was_pressed(0):
16          # Toggle sound ON/OFF
17          sound_on = not sound_on
18  
19      # Light PWR LED when muted
20      leds.pwr(not sound_on)
21  
22      # Beep on the Beat!
23      if sound_on:
24          spkr.pitch(784)
25          
26      # Pause long enough to see/hear the beat
27      sleep(beat_duration)
28      # Turn off sound and lights
29      spkr.off()
30      leds.user(0)
31  
32      # Select Tempo
33      if buttons.was_pressed(1):
34          tempo_select = tempo_select + 1
35          # Wrap around to zero at end of list
36          if tempo_select == len(tempo_list):

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 46 of 237



37              tempo_select = 0    

38  
39      # Show current tempo selection on LS LEDs
40      leds.ls(1 << tempo_select)
41  
42      # Pause to maintain the tempo
43      tempo = tempo_list[tempo_select]
44      pause = 60 / tempo - beat_duration
45      sleep(pause)

Hint:

Lists are indexed starting with zero

So tempo_list[5] is past the end since your list only contains 5 items!

Goals:

Use the len() function to detect when the BTN-1 selection has incremented past the end of the tempo_list.

Add code so your tempo selection wraps around to the beginning of the list when you go past the end.

Prove it by pressing BTN-1 until it wraps back to 0

Tools Found: Built-In Functions

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo_list = [40, 70, 100, 140, 180]
 5  tempo_select = 0
 6  tempo = 60
 7  beat_duration = 0.1
 8  sound_on = True
 9  
10  while True:
11      # Flash the red User LEDs
12      leds.user(0b11111111)
13  
14      # Check "mute" button
15      if buttons.was_pressed(0):
16          # Toggle sound ON/OFF
17          sound_on = not sound_on
18  
19      # Light PWR LED when muted
20      leds.pwr(not sound_on)
21  
22      # Beep on the Beat!
23      if sound_on:
24          spkr.pitch(784)
25          
26      # Pause long enough to see/hear the beat
27      sleep(beat_duration)
28      # Turn off sound and lights
29      spkr.off()
30      leds.user(0)
31  
32      # Select Tempo
33      if buttons.was_pressed(1):
34          tempo_select = tempo_select + 1
35          # Wrap around to zero at end of list

The length of the list is 5.

The items are indexed  0 - 4
...so when you reach 5 it's time to wrap!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 47 of 237



36          if tempo_select == len(tempo_list):
37              tempo_select = 0
38  
39      # Show current tempo selection on LS LEDs
40      leds.ls(1 << tempo_select)
41  
42      # Pause to maintain the tempo
43      tempo = tempo_list[tempo_select]
44      pause = 60 / tempo - beat_duration
45      sleep(pause)

Mission 7 - Line Sensors
Use the line sensors to navigate your robot. It's time for autonomous robotics!

Objective 1 - Line Sensors - Up Close!

How do the line sensors work?

Take a look at the close-up diagram to the right:

The emitter is like a flashlight, shining invisible light.
The detector is like your eyes - judging how bright the reflection is.
The reflector could be anything! A taped line on the floor, or any object
placed near the detector.

The detected brightness level can vary based on:

Reflectivity of the surface:
Reflective → shiny surfaces, white or light colors.
Not-Reflective → black or dark colors, empty space.

Distance of the surface from the sensor.

Your code can read the brightness level of the reflected infrared light as an
analog value with the function:

ls.read(num)  # Sensor 'num' can be 0, 1, 2, 3, or 4

This function turns on the emitter, reads the detector, then turns the emitter back off.
The value it returns is an integer between 0 and 4095, since the ADC (analog-to-digital) converter is 12 bits resolution
(212 = 4096 numbers).

Create a new file and name it "line_sense.py".

CodeTrek:

 1  from botcore import *
 2  
 3  while True:
 4      left = ls.read(0)
 5      right = ls.read(4) 

 6  
 7      print(left, right, sep=',')  

Read the line sensors

These two lines read sensors 0 and 4, the left and right edges.
The return values of ls.read() functions are stored in variables left and right.

Print values to the console

You can pass the print() function multiple arguments to be printed one after the other.
By default a space is printed between the arguments, but you can change that with the sep keyword argument.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 48 of 237



 8  

Goals:

Write an infinite loop that reads the value of line sensors 0 and 4 with ls.read(n)

Use the print function to display sensor values on the console.

Values must be formatted like so: 1234,5678

No spaces are allowed! (use the sep parameter)

Tools
Found:

Line Sensors, Analog to Digital Conversion, int, Binary Numbers, Print Function, Parameters, Arguments, and Returns, Keyword
and Positional Arguments

Solution:

 1  from botcore import *
 2  
 3  while True:
 4      left = ls.read(0)
 5      right = ls.read(4)
 6      
 7      print(left, right, sep=',')
 8  

Quiz 1 - Line Sensor Analog Values

Question 1: The line sensor functions return an int value corresponding to the amount of light reflected back from a surface. The
value is between 0 and 4095

What does a higher value mean?

done Higher numbers mean less light is reflected back to sensor.

close Higher numbers mean more light is reflected back to sensor.

Question 2: The line sensor readings range from 0 to 4095, which is 4096 levels of reflectivity. What's so special about 4096?

Why not use a nice round number like 4000?

done 4096 is a nice round number in binary!

close Light travels in packets of 4096 photons each, not round waves.

close The maximum size for an integer in Python is 4096, so the full range is 0 - 4095.

Objective 2 - Sensorial Geographic

Your 'bot is navigating a compass rose

Apparently someone has taken a map poster down from the World Geography classroom.

The compass rose is laid out in 8 shades of gray, ranging from black to white.

Can you detect which direction CodeBot is facing based on line sensor readings?

The ultimate Mission goal is to allow a user to type in a direction like 'N', 'E', 'SW',... and have CodeBot automatically rotate to face
that direction.

First step: Chart the Territory

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 49 of 237



You need to rotate your bot 360° and write down sensor readings.

Just add some motor spin code before your while loop
Watch the values printing on the console as you spin.
Stop your program after a full 360° rotation, and scroll back through the console to see the values.

There will be lots of duplicates. Find the stable value for each shade!
Note: the readings are raw ADC "counts", just relative light levels with no physical units.

Grab a piece of paper and make a table of your results.

You will have 8 rows in the table, one for each cardinal and intermediate direction.

The first 3 rows of my table are below. Your sensor readings may vary!

DirectionLeft Right
W 2517 3043
NW 3043 3569
N 3569 4080
...

CodeTrek:

 1  from botcore import *
 2  
 3  # Spin clockwise, slowly
 4  motors.enable(True)
 5  motors.run(LEFT, 10)
 6  motors.run(RIGHT, -10)  

 7  
 8  while True:
 9      left = ls.read(0)
10      right = ls.read(4)
11      print(left, right, sep=',')
12  

Goal:

Add some motor spin code before your while loop

Tools Found: Line Sensors, Motors, Loops, Print Function, Analog to Digital Conversion

Solution:

 1  from botcore import *
 2  
 3  # Spin clockwise, slowly
 4  motors.enable(True)
 5  motors.run(LEFT, 10)
 6  motors.run(RIGHT, -10)
 7  
 8  while True:
 9      left = ls.read(0)
10      right = ls.read(4)
11      print(left, right, sep=',')
12  

Objective 3 - Go North - v1

Rotating to Face North

Here is ancient coding wisdom:

Just your typical everyday spin-in-place code!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 50 of 237



"Do the simplest thing that could possibly work."

What could be simpler than just using a single sensor value to find North?

Add a branching if statement to your loop

Use break to exit the loop when your LEFT sensor is approximately at the expected North reading.

Take a look at your table of sensor readings:

What's the Left sensor value at the North position?
How different are the values from one position to the next?

My readings show the shades of gray about 500 counts apart.

Based on my values, if the sensor is within 100 counts of the expected North value it can be considered on-target.

CodeTrek:

 1  from botcore import *
 2  
 3  # Spin clockwise, slowly
 4  motors.enable(True)
 5  motors.run(LEFT, 10)
 6  motors.run(RIGHT, -10)
 7  
 8  while True:
 9      left = ls.read(0)
10      right = ls.read(4)
11      print(left, right, sep=',')
12  
13      # At North postion, my left sensor = 3569.
14      # Check for left reading within 100 counts of target.
15      if 3469 < left < 3669:
16          # We're in the neighborhood of North...
17          motors.enable(False)  # Stop the motors!
18          break  

Goal:

Use break to exit the loop when your LEFT sensor is approximately at the expected North reading.

Tools Found: Branching, Loops, Math Operators

Solution:

 1  from botcore import *
 2  
 3  # Spin clockwise, slowly
 4  motors.enable(True)
 5  motors.run(LEFT, 10)
 6  motors.run(RIGHT, -10)
 7  
 8  while True:
 9      left = ls.read(0)
10      right = ls.read(4)
11      print(left, right, sep=',')
12  
13      # At North postion, my left sensor = 3569.
14      # Check for left reading within 100 counts of target.
15      if 3469 < left < 3669:  
16          motors.enable(False)

Python supports chaining of comparison operators.

That means expressions like a < b < c have the interpretation that is conventional in mathematics.

In this case I've manually calculated limits below (-100) and above (+100 ) my target sensor
reading, and I'll break out of the loop if the left sensor is in that range.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 51 of 237



17          break
18  

Quiz 2 - Break Those Chains

Question 1: What is the purpose of the break statement?

done It breaks out of the nearest enclosing loop.

close It stops the program and exits immediately to the Operating System (OS).

close It allows another process to execute momentarily, like a "commercial break".

Question 2: Branching and comparison with if statements are very powerful tools. Use your knowledge of these techniques to
determine what is printed by the code below:

x = 42
y = 100
if  30 < x < 50:
    if y < 100:
        print('ONE')
    else:
        print('TWO')
else:
    print('THREE')

done TWO

close ONE

close THREE

Objective 4 - Go North - v2

Split the Difference

The simplest thing that could work is a good place to start, because it quickly shows you what needs to be improved! Sometimes
that's nothing at all... but not this time!

Your 'bot stops rotating too soon. In fact it stops before the right sensor crosses the center-line of North.

Straddle the Line

The first improvement to make in finding North is to have CodeBot continue rotating until the right sensor crosses the line to the next
section.

Each shaded section reads about 500 counts different than its neighbor.
So it's safe to set a minimum difference of 100 counts before you consider the right sensor to have crossed the line.

That would make a good constant to define in your code!

# Minimum difference (counts) to be considered in the next section
MIN_DIFF = 100

CodeTrek:

 1  from botcore import *
 2  
 3  # Sensor readings are around 500 counts apart.
 4  # Minimum difference (counts) to be considered in the next section.
 5  MIN_DIFF = 100 

Defining a constant

Often you'll put the constants and global variables near the top of your code.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 52 of 237



 6  
 7  # Spin clockwise, slowly
 8  motors.enable(True)
 9  motors.run(LEFT, 10)
10  motors.run(RIGHT, -10)
11  
12  while True:
13      left = ls.read(0)
14      right = ls.read(4)
15      print(left, right, sep=',')
16  
17      # First make sure sensors are "straddling" different sections.
18      if abs(left - right) > MIN_DIFF: 

19          # At North postion, my left sensor = 3569.
20          # Check for left reading within 100 counts of target.
21          if 3469 < left < 3669:
22              motors.enable(False)
23              break

Goal:

Check that the left and right sensor readings differ by more than MIN_DIFF before deciding that North has been reached.

Press RESET between each attempt. Your starting position must be West.

Tools Found: Constants, Locals and Globals, Built-In Functions

Solution:

 1  from botcore import *
 2  
 3  # Sensor readings are around 500 counts apart.
 4  # Minimum difference (counts) to be considered in the same region.
 5  MIN_DIFF = 100
 6  
 7  # Spin clockwise, slowly
 8  motors.enable(True)
 9  motors.run(LEFT, 10)
10  motors.run(RIGHT, -10)
11  
12  while True:
13      left = ls.read(0)
14      right = ls.read(4)
15      print(left, right, sep=',')
16  
17      # First make sure sensors are "straddling" different sections.
18      if abs(left - right) > MIN_DIFF:
19          # At North postion, my left sensor = 3569.
20          # Check for left reading within 100 counts of target.
21          if 3469 < left < 3669:
22              motors.enable(False)
23              break

Objective 5 - Go North - v3

Next Iteration...

That way, all the code below can access them.
And you can easily make changes if needed later, without having to sort through the code
to remember where you defined them!

Do the left and right sensor values differ more than MIN_DIFF?

Subtract them to find the difference.
It doesn't matter which is larger, so take the absolute value of the result.

Python's built-in abs() function will make sure it's positive.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 53 of 237



Tighten it up!

There's an easy change to improve your accuracy:

Currently you're using sensors LS-0 and LS-4.
Those are really far apart!
Instead, use 2 adjacent line sensors to straddle the line

And one more thing -

You defined MIN_DIFF = 100 but there is still a manual calculation in your code.
That if 3469 < left < 3669: hurts your code's readability.
Take a look at the CodeTrek for one way to fix that.

CodeTrek:

 1  from botcore import *
 2  
 3  # Sensor readings are around 500 counts apart.
 4  # Define a minimum difference (counts) to be considered in the same region.
 5  MIN_DIFF = 100
 6  
 7  # At North postion, my left sensor = 3569.
 8  target_left = 3569  

 9  
10  # Spin clockwise, slowly
11  motors.enable(True)
12  motors.run(LEFT, 10)
13  motors.run(RIGHT, -10)
14  
15  while True:
16      left = ls.read(1)
17      right = ls.read(2)  

18      print(left, right, sep=',')
19  
20      # First make sure sensors are "straddling" different sections.
21      if abs(left - right) > MIN_DIFF:
22          # Check for left reading within MIN_DIFF counts of target.
23          if abs(left - target_left) < MIN_DIFF:
24              motors.enable(False)
25              break  

Hint:

Observe and Adjust
If your bot is not stopping where you want it to, try to observe what's happening.

Does it overshoot or undershoot the target?

CODETREK

Define the target_left sensor value up here, so it's easy to change if you want to target a different direction.

Tighten it up!

Sensors 1 and 2 are close together.

Let's see these sensors straddle the line!
...this should improve your accuracy. (but it still won't be perfect)

Look familiar?

Using abs() to get the magnitude of a difference in sensor values is a 
technique worth remembering!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 54 of 237



Are you rotating too quickly?

Should you change which sensors are being used?

Goal:

Tighten up your code and see if you can get a little closer to True North

Tools Found: Line Sensors, Readability

Solution:

 1  from botcore import *
 2  
 3  # Sensor readings are around 500 counts apart.
 4  # Define a minimum difference (counts) to be considered in the same region.
 5  MIN_DIFF = 100
 6  
 7  # At North postion, my left sensor = 3569.
 8  target_left = 3569
 9  
10  # Spin clockwise, slowly
11  motors.enable(True)
12  motors.run(LEFT, 10)
13  motors.run(RIGHT, -10)
14  
15  while True:
16      left = ls.read(1)
17      right = ls.read(2)
18      print(left, right, sep=',')
19  
20      # First make sure sensors are "straddling" different sections.
21      if abs(left - right) > MIN_DIFF:
22          # Check for left reading within MIN_DIFF counts of target.
23          if abs(left - target_left) < MIN_DIFF:
24              motors.enable(False)
25              break

Objective 6 - Compass Navigator

Interactive Nav-Bot!

Now that you can follow your sensors accurately, it's time to unleash the power on all the other compass directions!

You can't let North have all the fun ;-)
The goal is for a user to be able to input any cardinal or intermediate direction:

Clockwise around the compass rose: N, NE, E, SE, S, SW, W, NW

Got Data?

Do you still have that scrap of paper with all the sensor readings?

You only need the Left sensor reading for each direction

IndexDirectionLeft
0 W 2517
1 NW 3043
2 N 3569
... ...

There should be 8 rows in your table (Index 0 - 7).

In Python the table above can be coded as a list of lists:

This is also known as a 2-dimensional Array or Matrix.

sensor_data = [
    ['W',  2517],

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 55 of 237



    ['NW', 3043],
    ['N',  3569],
]

So sensor_data[0] is the first row of the table.

It is itself a list, containing the name and left value.

# Example:
row = sensor_data[0]   # row is ['W', 2517]
name = row[0]          # name is 'W'
value = row[1]         # value is 2517

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Sensor readings are around 500 counts apart.
 5  # Define a minimum difference (counts) to be considered in the same region.
 6  MIN_DIFF = 100
 7  
 8  # A matrix of values [ [direction_name, left_sensor_value],... ]
 9  sensor_data = [
10      ['N',  3569],
11      ['NE', 4080],
12      ['E',  369],
13      ['SE', ???],
14      ['S',  ???],
15      ['SW', ???],
16      ['W',  ???],
17      ['NW', ???]
18  ] 

19  
20  # Prompt user for direction
21  target_direction = input("Enter target direction: ") 

22  
23  def find_name(left):
24      """Search for a direction name given a left-side sensor reading"""
25      for d in sensor_data:
26          if abs(left - d[1]) < MIN_DIFF:
27              # Found it! Return the name.
28              return d[0]  

The Matrix!

This is your data table coded as a 2-dimensional array.
That's just a list 

...where each item is also a list

The outer list is "columns" and the inner one is "rows".

Notice you can write this on multiple lines for readability.
That also makes the array look more like a written table!

Prompt for input on the Console

This will return a string
Save it in a global variable target_direction
The user will have to type an exact match for the name in your data table.

The comparison is case-sensitive too!

Define a function def find_name(): to search your data table.

Loop through each row.
Check if the sensor value is close to the row value.
If it is, return the row name.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 56 of 237



29  
30  # Spin clockwise, slowly
31  motors.enable(True)
32  motors.run(LEFT, 10)
33  motors.run(RIGHT, -10)
34  
35  while True:
36      left = ls.read(1)
37      right = ls.read(2)
38      # print(left, right, sep=',')  

39  
40      # First make sure sensors are "straddling" different sections.
41      if abs(left - right) > MIN_DIFF:
42          found = find_name(left)  

43          if found:
44              print(found)
45              if found == target_direction:
46                  break  

47  
48  # Charge ahead bravely!
49  motors.run(LEFT, 40)
50  motors.run(RIGHT, 40)
51  sleep(3.0)  

52  
53  

Hints:

Observe and Adjust
If your bot is not stopping where you want it to, try to observe what's happening.

Does it overshoot or undershoot the target?

Are you rotating too quickly?

Should you change which sensors are being used?

Possible Adjustments
Try slowing your rotation speed.

Use a different pair of line sensors.

Comment out this print function.

Search your data table!

You pass it a sensor reading
...it gives you the direction name!
See how the function return value replaces the call?

In this case the value is assigned to found.

When you reach the target, break out of the loop!

Note: Leave the motors enabled here!

Charge forward to hit the water bottle!

Remember to sleep() for a bit, since the motors stop when your program ends.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 57 of 237



Use print statements to better understand what your code is doing.

Function Return Values
Your find_name() function does some work, and returns a value when you call it.

A return statement can appear anywhere in a function.

It ends the execution of the function, so your program resumes right where the function was called.

The return value replaces the function call!

Goals:

Create a 2D Array of sensor_data with 8 rows.

Each row should contain [name, left_sensor_value]

Define a function def find_name(left): that returns a direction name given a left-side sensor reading.

This will use a for loop to search through sensor_data.

Use the input function to prompt the user to enter a direction name on the console.

After a direction is entered, get moving!

After your 'bot rotates, move forward to knock the water bottle down!

You'll need to type in the correct direction on the console.

Tools Found: Input Function, list, Functions, Parameters, Arguments, and Returns, Loops, Readability, str, Locals and Globals, Print Function

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Sensor readings are around 500 counts apart.
 5  # Define a minimum difference (counts) to be considered in the same region.
 6  MIN_DIFF = 100
 7  
 8  # A matrix of values [ [direction_name, left_sensor_value],... ]
 9  sensor_data = [
10      ['N',  3569],
11      ['NE', 4080],
12      ['E',  369],
13      ['SE', 940],
14      ['S',  1450],
15      ['SW', 1991],
16      ['W',  2517],
17      ['NW', 3043]
18  ]
19  
20  # Prompt user for direction
21  target_direction = input("Enter target direction: ")
22  
23  def find_name(left):
24      """Search for a direction name given a left-side sensor reading"""
25      for d in sensor_data:
26          if abs(left - d[1]) < MIN_DIFF:
27              # Found it! Return the name.
28              return d[0]
29  
30  # Spin clockwise, slowly
31  motors.enable(True)
32  motors.run(LEFT, 10)
33  motors.run(RIGHT, -10)
34  
35  while True:
36      left = ls.read(1)
37      right = ls.read(2)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 58 of 237



38      # print(left, right, sep=',')
39  
40      # First make sure sensors are "straddling" different sections.
41      if abs(left - right) > MIN_DIFF:
42          found = find_name(left)
43          if found:
44              print(found)
45              if found == target_direction:
46                  break  # Leave motors enabled!
47  
48  # Charge ahead bravely!
49  motors.run(LEFT, 40)
50  motors.run(RIGHT, 40)
51  sleep(3.0)

Quiz 3 - Just One More Thing

Question 1: You used a new Python built-in function: abs() What is the value of x after this code runs?

x = abs(-123)

done 123

close 246

close -12.3

close -12.3

Question 2: You used lists to build a 2-dimensional array also known as a "Matrix".

In the following 2D array, how would you reference the element 'g'?

matrix = [
    ['a', 'b', 'c'],
    ['d', 'e', 'f'],
    ['g', 'h', 'i'],
]

done matrix[2][0]

close matrix[3][1]

close matrix[2[0]]

close matrix[2,0]

Question 3: What is the value of in_zone after the following code runs?

def check_zone(left, right):
    return abs(left - right) > 100

in_zone = check_zone(300, 400)

done False

close True

close -100

Question 4: What is the value of target_direction after the following code runs and the user enters W on the console?

def get_dir():
    input("Enter target direction: ")

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 59 of 237



target_direction = get_dir()

done None

close "W"

close "w"

close An error occurs: UnknownReturnValue: Function definition without return statement.

Mission 8 - Boundary Patrol
Program your CodeBot to roam a fenced area, using the line sensors to stay in bounds.

Objective 1 - Into the Unknown

Into the Unknown
Using CodeBot's line sensors to explore your environment.

Create a new file!

Use the File → New File menu to create a new file called "boundary.py"

As you can see in the 3D view, your 'bot is positioned on a piece of white sign-board

This stuff comes in a standard size for yard signs, and it's a nice surface for robots too :-)
A rectangular border has been marked with black electrical tape.

You already know how to use the line sensors. So the first step in navigating across this new surface is to figure out what sensor
readings you get from the white surface versus the black lines.

Remember, brighter reflection → lower sensor reading
So when you hit a border line, the sensor reading should be much larger.

Off the Table?
Drive forward slowly, taking sensor readings, until you plunge off the table.

FOR SCIENCE!

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  motors.run(LEFT, 10)
 6  motors.run(RIGHT, 10)  

 7  
 8  while True:
 9      val = ls.read(0)  

10      print(val)
11      sleep(0.1)  

Keep your speed down here. Under 20% power will let you watch the console and track variations in surface reflectivity.

Just need to read a single value from line sensors LS-0 here. The other sensors would be reporting very nearly the same value, right?

print the raw ADC value to the console, so you can watch it!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 60 of 237



12     

Hint:

Need to clear the console?

Just right-click in the console window and choose "Terminal Clear" from the pop-up options.

Goals:

Drive straight ahead slowly. Keep your motor power below 20%

Run an infinite loop, checking LS-0 and printing the value to the console.

Just print the single sensor value alone, so I can check it easily.

Delay for 0.1 second between samples.

Tools Found: Line Sensors, Motors, Loops, Print Function, Analog to Digital Conversion

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  motors.run(LEFT, 10)
 6  motors.run(RIGHT, 10)
 7  
 8  while True:
 9      val = ls.read(1)
10      print(val)
11      sleep(0.1)

Objective 2 - Toe the Line

Toe the Line!
Okay, so now you have the data. Really it's just two numbers you'll need:

1. Sensor reading for the surface = ??
2. Sensor reading for the line = ??

Based on that information, are the numbers far enough apart that your code can detect the line?

Careful, the numbers might change a little as you roll along!

Color variations might occur on the surface.
The front of your 'bot might bounce a little, causing the reading to be "darker" because the sensor is farther away.

Split the Difference

Choose a threshold value about midway between the surface and the line.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Anything over this is a Line
 5  threshold = 2000  

The sleep(0.1) here is optional but without it you may have thousands of samples to scroll through on the console!

Define your threshold

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 61 of 237



 6  
 7  # Drive straight ahead
 8  motors.enable(True)
 9  motors.run(LEFT, 20)
10  motors.run(RIGHT, 20)
11  
12  while True:
13      val = ls.read(0)
14      print(val)
15      sleep(0.1)
16      if val > threshold:
17          break  

18  

Goal:

Add an if condition to your code to break out of the loop if the sensor value exceeds your threshold.

Stop your motors right on the line!

Tools Found: Branching, Loops, Motors

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  threshold = 2000
 5  
 6  motors.enable(True)
 7  motors.run(LEFT, 20)
 8  motors.run(RIGHT, 20)
 9  
10  while True:
11      val = ls.read(0)
12      print(val)
13      sleep(0.1)
14      if val > threshold:
15          break

Quiz 1 - Break Out

Question 1: What value of threshold would cause the following to print 0 1 2 3?

for i in range(5):
    if i > threshold:
        break
    print(i, end=' ')

close threshold = 2

done threshold = 3

close threshold = 4

Higher than a valid surface reading. Anything above this value must be a Line!

Have you crossed the threshold?

Check the current sensor val against your pre-set threshold.

If it looks like a Line, exit the loop so your program ends and motors stop.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 62 of 237



Question 2: How many times will the following loop read the line sensor?

i = 0
while i < 10:
    val = ls.read(0)
    print(val)
    
print("Done!")

done An infinite number of times, since the variable i is never changed.

close 9

close 10

Objective 3 - Speedy Stops

Try increasing the speed of your 'bot.

How about 100% power to the motors? Go for it!

Crossing the Line?

It's okay for the front edge of your bot to go over the line a little, but try not to leave the board!

How can you increase speed without crossing the boundary line?

Sorry, but 100% power is too fast such a small board... But you might be able to run with 50% power, if you can put on the brakes!

Strategy

1. Read the line sensors more quickly, to improve CodeBot's reaction time.
2. Increase the stopping power of the wheels by reversing the motors briefly.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  threshold = 2000
 5  
 6  # A function to put on the brakes
 7  def brake():
 8      motors.run(LEFT, -70)
 9      motors.run(RIGHT, -70)
10      sleep(0.3) 

11  
12  # Drive straight ahead
13  motors.enable(True)
14  motors.run(LEFT, 50)  

15  motors.run(RIGHT, 50)
16  
17  while True:
18      val = ls.read(0)
19      if val > threshold:
20          break  

Define a new function to "brake" by reversing the motors briefly.

Experiment to find the power and duration that work best for you.

Increase your speed. How fast can you go without leaving the board?

I completely removed sleep() and print() here.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 63 of 237



21  
22  brake()  

Hint:

Commenting-out Code
An easy way to remove the sleep() and print() lines temporarily is to

comment them out

Do this by placing a # in front of those lines.

There's even a handy editor shortcut for doing just that for a line or selected block of code. Try CTRL-/.

Goals:

Define a function called def brake(): that reverses both motors briefly, to give you some stopping power.

Call your brake() function when you break out of the while loop.

Remove the sleep() and print() function calls from your code. Brake the instant your sensor detects a line!

Tools Found: Motors, Line Sensors, Functions, Comments

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  threshold = 2000
 5  
 6  def brake():
 7      motors.run(LEFT, -70)
 8      motors.run(RIGHT, -70)
 9      sleep(0.3)
10  
11  
12  motors.enable(True)
13  motors.run(LEFT, 50)
14  motors.run(RIGHT, 50)
15  
16  while True:
17      val = ls.read(0)
18      if val > threshold:
19          break
20  
21  brake()

Objective 4 - Turn and Burn

Keep Moving - Turn and Burn!

The overall goal of this Mission is for CodeBot to continuously roam around inside the lines.

Here's a simple algorithm to do that:

1. Drive forward until you hit a line.
2. Slam on the brakes!
3. Back up a bit.
4. Turn right.

You can comment-out those lines instead if you prefer.

Call the brake() function immediately when your sensing loop ends.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 64 of 237



5. Repeat!

Complete this Objective by coding this algorithm.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  threshold = 2000
 5  SPEED = 50  # motor % when driving forward
 6  

 7  
 8  # A function to simplify motor commands
 9  def go(left, right, delay=0):
10      motors.run(LEFT, left)
11      motors.run(RIGHT, right)  

12  
13      if delay:
14          sleep(delay) 

15  
16  # A function to put on the brakes
17  def brake():
18      go(-70, -70, 0.3)  

19  
20  # Back up a bit and turn
21  def back_turn():
22      go(-50, -50, 0.5)
23      go(50, -50, 0.5)
24  
25  motors.enable(True)
26  
27  # Drive straight ahead
28  go(SPEED, SPEED)  

29  
30  while True:
31      val = ls.read(0)

A constant SPEED

Often you will have some global settings that control how your code runs. Your code will be much more 
readable and easy to modify if you define these with meaningful names. That's much better than having "magic numbers" 

scattered throughout your code.

There are still some magic numbers in the code below. Maybe you should fix those too!

A utility function go()

Often you'll want to set new motor LEFT/RIGHT speeds, sometimes followed by a sleep() delay.

This function allows the caller to omit the delay if it's not needed.
Read about default parameters to learn more.

Last step in the go() function is to deal with delay.

See how the integer value is used as a boolean here?
Read about boolean to understand truthy and falsy values.

Check it out. Your go() function took 3 lines of code down to 1.

Using the SPEED constant here.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 65 of 237



32      if val > threshold:
33          # Hit a line: stop, turn, and go again
34          brake()
35          back_turn()
36          go(SPEED, SPEED)  

37  
38  

Hint:

Study the new concepts
Learn about constants.

Understand default parameters.

Goals:

Define a function def go(left, right, delay=0): that uses a default parameter for delay. This should run the motors at the
given speeds, then optionally sleep(delay).

Rewrite your brake() to use the new go() function. Also define a function to backup and turn right that also uses go().

Use a constant called SPEED to set the forward speed, near the top of your code so it's easy to change.

Don't break... brake()! Remove the break from your while loop. Instead, call brake() then backup and turn inside your loop.

Tools Found: Default function parameters, Motors, Functions, Constants, Loops, Locals and Globals, Readability, int, bool

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  threshold = 2000
 5  SPEED = 50  # motor % when driving forward
 6  
 7  # A function to simplify motor commands
 8  def go(left, right, delay=0):
 9      motors.run(LEFT, left)
10      motors.run(RIGHT, right)
11  
12      if delay:
13          sleep(delay)
14  
15  # A function to put on the brakes
16  def brake():
17      go(-70, -70, 0.3)
18  
19  # Back up a bit and turn
20  def back_turn():
21      go(-50, -50, 0.5)
22      go(50, -50, 0.5)
23  
24  motors.enable(True)
25  
26  # Drive straight ahead
27  go(SPEED, SPEED)
28  
29  while True:
30      val = ls.read(0)
31      if val > threshold:

Follow the algorithm:

When a line is hit: brake, back up, turn, and go forward again!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 66 of 237



32          # Hit a line: stop, turn, and go again
33          brake()
34          back_turn()
35          go(SPEED, SPEED)
36  
37  

Quiz 2 - Function Junction

Question 1: Which two of the following cause CodeBot to rotate clockwise (right turn)?

def go_bot(left=50, right=50):
    motors.enable(True)
    motors.run(LEFT, left)
    motors.run(RIGHT, right)

done go_bot(right = -50)

done go_bot(50, -50)

close go_bot(left = 50, -50)

close go_bot(right = 50)

Question 2: Which two of the following variable names follow the style convention for Python constants?

done IDLE_MODE

done BASIC

close Active_State

close boundary_line

Question 3: What is the difference between function arguments and parameters?

done Parameters are named variables you list in the function definition. Arguments are the values passed when you call the
function.

close Parameter is just another name for Argument. The terms are interchangeable.

close Arguments are innappropriate, and have no place in Python coding. Conversely, Parameters provide firm boundaries so that
code can run more efficiently.

Question 4: What style of argument passing is this?

go_bot(30, 10)

done Positional

close Keyword

close Both Positional and Keyword

Question 5: What style of argument passing is this?

go_bot(left = 25)

done Keyword

close Positional

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 67 of 237



close Both Positional and Keyword

Objective 5 - Smarter Turns

Smarter Turns
You have an autonomous rover!

And it almost does a good job of staying in a bounded area. But sometimes your
robot gets a little confused.

Your code always turns right, even if it hits the line with its right-front sensor first.

A better plan would be to turn away from the corner that hits first. (see picture)
Also you could make smaller turns when you know you aren't hitting the line head-on.

Using More Sensors

You will need to read the other line sensors to make better turning decisions.

There are several improvements and new concepts in the CodeTrek!

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  threshold = 2000
 5  SPEED = 50  # motor % when driving forward
 6  
 7  def go(left, right, delay=0):
 8      """A function to simplify motor commands"""  

 9      motors.run(LEFT, left)
10      motors.run(RIGHT, right)
11  
12      if delay:
13          sleep(delay)
14  
15  def brake():
16      """A function to put on the brakes"""
17      go(-70, -70, 0.3)
18  
19  def back_turn(turn_power=50):  

20      """Back up a bit and turn. Positive power turns right, negative turns left"""
21      go(-50, -50, 0.5)
22      go(turn_power, -turn_power, 0.5)
23  
24  def scan_lines():
25      """Read all line sensors, compare with threshold, and return a list
26         of 5 bool results.
27      """  

What's this? A docstring!

Python provides a special way to document functions. (other objects too!)
These triple-quotes are placed on either side, surrounding your documentation comments which can 
even span multiple lines.

For documenting functions this is preferred over regular comments. 

Add a default parameter to your back_turn() function.

This will work exactly the same as before when it's called with no arguments.
But you can also pass it turn_power to change the amount and/or direction of the turn!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 68 of 237



28      sensors = []  # Start with an empty list
29      for i in range(5):
30          val = ls.read(i)
31          is_line = val > threshold
32          sensors.append(is_line)  # Fill list with is_line bools
33      return sensors   

34  
35  motors.enable(True)
36  
37  # Drive straight ahead
38  go(SPEED, SPEED)
39  
40  while True:
41      vals = scan_lines()
42      leds.ls(vals)  

43      if any(vals):
44          brake() 

45          if vals[0] and not vals[4]:
46              # Left corner hit, turn right
47              back_turn(30)  

48          elif vals[4] and not vals[0]:
49              # Right corner hit, turn left
50              back_turn(-30)
51          else:
52              back_turn()
53  
54          go(SPEED, SPEED)  

A new function that will check all 5 sensors and return a list of bool results.

Study this carefully

Each time the function is called it starts with an empty list.

The for loop ranges i from 0 to 4.
The first time through the loop, LS-0 is read and compared with threshold.

The bool result of this comparison becomes the first item in the list
...and so it continues until all 5 line sensors have been read!

All functions have just one return value. But you can return a single list with lots of values packed in it! 

Let Your Line Lights Shine!

Those Line Sensor LEDs are positioned directly above the line sensors for a reason.

And besides being able to handle a binary value, the leds.ls(n) API also works great if you pass it a list of bools.
Perfect for showing the state of all 5 sensors in one simple function call!

Know any Python built-ins?

This is a good one to know! The any(iterable) function returns True if any item in your list is True.

That makes this a super-fast way to find out if CodeBot has hit a line.

First thing when you hit a line, brake()!

Smart Turns

Check if one corner hit, but not the other.

Notice if the left corner hit, you turn right.
...and turn with a little less speed.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 69 of 237



55  

Hint:

Step into your code with the CodeSpace Debugger.

First click bug_report then use the  button to step through your code.

Don't forget to watch your variables in the menu console panel!

Goals:

Add a default parameter to your back_turn() function. Just one parameter to set both power and direction of the turn.

Code a new function called def scan_lines(): that reads all line sensors, compares with threshold, and returns a list of 5
bool results.

Use the any() built-in to check if a line was hit.

Add smarter turns so you stay on the board and hit the Water Bottle!

Succeed within a 30 second timeout

Tools
Found:

Line Sensors, Default function parameters, Functions, list, bool, Built-In Functions, Comments, Keyword and Positional Arguments,
Loops, Comparison Operators, Parameters, Arguments, and Returns, CodeBot LEDs, Binary Numbers, API, Indentation

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  threshold = 2000
 5  SPEED = 50  # motor % when driving forward
 6  
 7  def go(left, right, delay=0):
 8      """A function to simplify motor commands"""
 9      motors.run(LEFT, left)
10      motors.run(RIGHT, right)
11  
12      if delay:
13          sleep(delay)
14  
15  def brake():
16      """A function to put on the brakes"""
17      go(-70, -70, 0.3)
18  
19  def back_turn(turn_power=50):
20      """Back up a bit and turn. Positive power turns right, negative turns left"""
21      go(-50, -50, 0.5)
22      go(turn_power, -turn_power, 0.5)
23  
24  def scan_lines():
25      """Read all line sensors, compare with threshold, and return a list
26         of 5 bool results.
27      """
28      sensors = []  # Start with an empty list
29      for i in range(5):
30          val = ls.read(i)
31          is_line = val > threshold
32          sensors.append(is_line)  # Fill list with is_line bools

Don't forget to drive forward

Notice this is still indented under the if any(vals): check.

Gotta resume driving forward after braking and turning.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 70 of 237



33      return sensors
34  
35  motors.enable(True)
36  
37  # Drive straight ahead
38  go(SPEED, SPEED)
39  
40  while True:
41      vals = scan_lines()
42      leds.ls(vals)
43      if any(vals):
44          print(vals, ls.check(0))
45          brake()
46          if vals[0] and not vals[4]:
47              # Left corner hit, turn right
48              back_turn(30)
49          elif vals[4] and not vals[0]:
50              # Right corner hit, turn left
51              back_turn(-30)
52          else:
53              back_turn()
54  
55          go(SPEED, SPEED)
56  

Objective 6 - Enter the Dohyō

Get Your Sumo On!
A classic robot competition event is Robot-Sumo. It is a sport where two robots attempt to
push each other out of a Dohyō, which is a circular area like the one shown in the 3D view.

Your CodeBot is sitting at the center of a regulation Mini-Sumo Dohyō.
You've been invited to compete against the dreaded Water Bottle!

This is your final Objective of this Mission

And you just have a little more code to write in order to achieve it!

Hint:

Your code from the previous Objective is very close!

Take a look at where you are comparing the sensor reading against a threshold.

Remember, brighter reflection → lower sensor reading

So when you hit a border line, the sensor reading should be much lower than the threshold.

Goals:

Modify your code to detect a reflective Line against a dark surface.

Roam until you defeat the water bottle!

Complete the battle within 30 seconds

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  threshold = 2000
 5  SPEED = 50  # motor % when driving forward
 6  
 7  def go(left, right, delay=0):
 8      """A function to simplify motor commands"""
 9      motors.run(LEFT, left)
10      motors.run(RIGHT, right)
11  

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 71 of 237



12      if delay:
13          sleep(delay)
14  
15  def brake():
16      """A function to put on the brakes"""
17      go(-70, -70, 0.3)
18  
19  def back_turn(turn_power=50):
20      """Back up a bit and turn. Positive power turns right, negative turns left"""
21      go(-50, -50, 0.5)
22      go(turn_power, -turn_power, 0.5)
23  
24  def scan_lines():
25      """Read all line sensors, compare with threshold, and return a list
26         of 5 bool results.
27      """
28      sensors = []  # Start with an empty list
29      for i in range(5):
30          val = ls.read(i)
31          is_line = val < threshold
32          sensors.append(is_line)  # Fill list with is_line bools
33      return sensors
34  
35  motors.enable(True)
36  
37  # Drive straight ahead
38  go(SPEED, SPEED)
39  
40  while True:
41      vals = scan_lines()
42      leds.ls(vals)
43      if any(vals):
44          brake()
45          if vals[0] and not vals[4]:
46              # Left corner hit, turn right
47              back_turn(30)
48          elif vals[4] and not vals[0]:
49              # Right corner hit, turn left
50              back_turn(-30)
51          else:
52              back_turn()
53  
54          go(SPEED, SPEED)
55  

Mission 9 - Line Following
Tune up your Line Sensors and hit the road on the biggest and baddest line-course around. Can your Python code master this
challenge?

Objective 1 - Sensors Ready

Create a new file!

Use the File → New File menu to create a new file called "line_scanner.py"

Ready Your Sensors

Your line follower 'bot will need to continuously check for the presence of a line beneath all 5 line sensors.

You did that in the previous mission with the scan_lines() function.

Begin this Mission by:

1. Defining a threshold sensor value midway between the white sign-board surface and the black electrical tape line readings.
2. Calling scan_lines() continuously inside an infinite while loop.
3. Displaying the result on the line sensor LEDs.

Are your LS LEDs LOL?

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 72 of 237



LOL, like: "Lit On the Line"

CodeTrek:

 1  from botcore import *
 2  
 3  threshold = 2000  

 4  
 5  def scan_lines():
 6      """Read all line sensors, compare with threshold, and return a list
 7         of 5 bool results.
 8      """
 9      sensors = []  # Start with an empty list
10      for i in range(5):
11          val = ls.read(i)
12          is_line = val > threshold
13          sensors.append(is_line)  # Fill list with is_line bools
14      return sensors 

15  
16  while True:
17      vals = scan_lines()
18      leds.ls(vals)  

19  

Goals:

Run your infinite loop displaying scan_lines() result on the Line Sensor LEDs.

On RESET your 'bot is positioned on a line, so you should see at least one of the middle-three LS LEDs lit up!

Step into your code with the Debugger.

Use the "Step In" button, and step into scan_lines().

Watch the sensors list grow in the Console Variables / Locals view.

Tools Found: Line Sensors, Functions, Loops, CodeBot LEDs, list, Parameters, Arguments, and Returns, Variables, Locals and Globals

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  threshold = 2000
 5  
 6  def scan_lines():
 7      """Read all line sensors, compare with threshold, and return a list

This is about midway between surface and line sensor reading for my 'bot.

The function returns a list.

Step through this code and watch the list grow in the Console Variables panel!

Variables defined inside a function, including the parameters, are local variables.
If you're interested, read up on the difference between local and global. The knowledge will soon come in handy!

Pretty simple loop

All it's doing is reading the sensors and displaying the values on the LEDs.

That's a good start!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 73 of 237



 8         of 5 bool results.
 9      """
10      sensors = []  # Start with an empty list
11      for i in range(5):
12          val = ls.read(i)
13          is_line = val > threshold
14          sensors.append(is_line)  # Fill list with is_line bools
15      return sensors
16  
17  while True:
18      vals = scan_lines()
19      leds.ls(vals)
20  

Objective 2 - Sensor Hacking on the REPL

Hacking Sensors and Lists

As you've seen, converting the line sensor values into a list is quite useful.

Really, this is all you need to build an excellent Line Follower.
But from here on, your code will only grow more complex.
...so you should explore ways to further simplify and optimize what you have!

There are ways to optimize your code. To learn them you must go...

To the REPL!

So far you have used the menu Console to:

1. Output messages using the print function.
2. Get keyboard input strings using the input function.

But there is an even more powerful capability hidden there. You can enter Python code interactively! Learn more in the REPL tool.
You can:

Test Python functions, expressions, and data types.
import libraries and experiment with APIs.

Use it as a calculator!

Be sure to stop your program before continuing

Then open the Console panel, click there, and interact to complete this Objective.

Goals:

It's a calculator! Click in the REPL panel and type: 2 + 2 then press ENTER.

Watch your 'bot as you enter these 2 lines:

from botcore import *
leds.user(1)

If the LED is already On, turn it Off first

Type: ls.read(0) to instantly read sensor 0 and see the result right on the Console.

You can use the Up-Arrow ⇧ key to repeat commands.

With a list comprehension you can code your whole scan_lines() function in one line!

Type: [ls.read(i) > 2000 for i in range(5)]

Finally, the line sensors API has a built-in function that does what you need!

Type: ls.check()

Tools Found: Line Sensors, list, REPL, Print Function, str, Input Function, import, API, List Comprehension, Loops

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 74 of 237



Solution:

1  # All code entered on the REPL interactively

Quiz 1 - List comprehensions and Tuples

Question 1: What is the result of the following list comprehension?

[i**2 for i in range(5)]

(Try it on the REPL if you like!)

done [0, 1, 4, 9, 16]

close [0, 2, 4, 6, 8]

close (0, 1, 4, 9, 16)

Question 2: Explore the line sensors documentation.

What type of data does ls.check() return?

done tuple

close list

close string

Question 3: A tuple is similar to a list, but with important differences.

# Define a tuple using parenthesis rather than square brackets.
t = ("Zero", "One", "Two")

Which TWO of the following can you NOT do with a tuple?

done Change an item: t[1] = "Uno"

done Append an item: t.append("Three")

close Retrieve an item: result = t[2]

close Check the length: n = len(t)

Objective 3 - Bang Bang Control

Simple Bang-Bang Line Follower

Ready to Code a Line Follower?

To begin with you will just use the 2 outermost line sensors

LS-0 and LS-4

Your algorithm is simple:

Left sensor hit line? Turn LEFT.
Right sensor hit line? Turn RIGHT.
...otherwise go straight.

This is actually a type of control system called a "bang-bang controller".

You can think of the robot "banging" against the LEFT and RIGHT sensors as it swerves down the line!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 75 of 237



There are much more sophisticated control systems, some of which you will be
exploring soon.

Create a new file!

Use the File → New File menu to create a new file called "bang_bang.py"

CodeTrek:

 1  from botcore import *
 2  
 3  # Set overall speed and turning parameters
 4  SPEED = 30
 5  TURN_FACTOR = 0.2  # lower value is sharper turn
 6  

 7  
 8  motors.enable(True)
 9  
10  while True:
11      vals = ls.check(2000)
12      leds.ls(vals)  

13  
14      if vals[0]:
15          # Hit left --> turn left
16          motors.run(LEFT, SPEED * TURN_FACTOR)
17          motors.run(RIGHT, SPEED)  

18      elif vals[4]:
19          # Hit right --> turn right
20          motors.run(LEFT, SPEED)
21          motors.run(RIGHT, SPEED * TURN_FACTOR)
22      else:
23          # Default to driving forward at full speed
24          motors.run(LEFT, SPEED)
25          motors.run(RIGHT, SPEED)
26  

Hint:

You will probably need to reduce both the SPEED and TURN_FACTOR values shown in the CodeTrek.

It's okay to go slowly and turn sharply!

Goals:

These are the constants that determine the top speed and how sharp the turns are as you navigate the line.

Note: You will need to experiment with these numbers to stay on the line consistently.
The simple bang-bang controller can't handle high speeds...

Use the built-in line sensors ls.check() API for speed and simplicity.

Bang-Bang
Just use the outside sensors:

LS-0 → LEFT side
LS-4 → RIGHT side

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 76 of 237



Code your bang-bang line follower, and attempt to drive the Line Follow Course. Make it at least as far as the first checkpoint.

Get to the checkpoint in 45 seconds or less

Tools Found: Line Sensors, Constants, API

Solution:

 1  from botcore import *
 2  
 3  SPEED = 30
 4  TURN_FACTOR = 0.2
 5  
 6  motors.enable(True)
 7  
 8  while True:
 9      vals = ls.check(2000)
10      leds.ls(vals)
11  
12      if vals[0]:
13          # Hit left --> turn left
14          motors.run(LEFT, SPEED * TURN_FACTOR)
15          motors.run(RIGHT, SPEED)
16      elif vals[4]:
17          # Hit right --> turn right
18          motors.run(LEFT, SPEED)
19          motors.run(RIGHT, SPEED * TURN_FACTOR)
20      else:
21          motors.run(LEFT, SPEED)
22          motors.run(RIGHT, SPEED)
23  

Objective 4 - Smarter Turns

Smarter Turns
Try running your bot a few times on the course using the Attached camera view.

Pay close attention when your bot "loses" the line.
What do the motors do in this case?

Problem:

When your bot loses the line it just keeps driving forward at full speed!

Solution:

Only drive forward if you're on the line.

What if you're completely off the line?

Usually this happens when you missed a turn.
But usually the bot starts to turn, and just overshoots. So if you lose the line, keep turning!

CodeTrek:

 1  from botcore import *
 2  
 3  SPEED = 50
 4  TURN_FACTOR = 0.2
 5  
 6  motors.enable(True)
 7  
 8  while True:
 9      vals = ls.check(2000)
10      leds.ls(vals)
11  
12      if vals[0]:

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 77 of 237



13          # Hit left --> turn left
14          motors.run(LEFT, SPEED * TURN_FACTOR)
15          motors.run(RIGHT, SPEED)
16      elif vals[4]:
17          # Hit right --> turn right
18          motors.run(LEFT, SPEED)
19          motors.run(RIGHT, SPEED * TURN_FACTOR)
20      elif vals[1] or vals[2] or vals[3]:
21          # Go straight only if on line
22          motors.run(LEFT, SPEED)
23          motors.run(RIGHT, SPEED)  

24  

Hint:

Add an elif that confirms you're on the line

If you've lost the line, just keep acting on the most recent sensor data you have.

Hopefully you were already turning, just not quite sharp enough.

Goals:

Use the CodeTrek to Improve your bang-bang line follower and reach Checkpoint 1

With your improved code, reach Checkpoint 2

Get to Checkpoint 2 in 90 seconds or less

Tools Found: Logical Operators

Solution:

 1  from botcore import *
 2  
 3  SPEED = 50
 4  TURN_FACTOR = 0.2
 5  
 6  motors.enable(True)
 7  
 8  while True:
 9      vals = ls.check(2000)
10      leds.ls(vals)
11  
12      if vals[0]:
13          # Hit left --> turn left
14          motors.run(LEFT, SPEED * TURN_FACTOR)
15          motors.run(RIGHT, SPEED)
16      elif vals[4]:
17          # Hit right --> turn right
18          motors.run(LEFT, SPEED)
19          motors.run(RIGHT, SPEED * TURN_FACTOR)
20      elif vals[1] or vals[2] or vals[3]:
21          # Go straight only if on line
22          motors.run(LEFT, SPEED)
23          motors.run(RIGHT, SPEED)
24  

Replace your else with an elif

Check to see if any of the middle 3 line sensors detect a line. Only drive forward if this is true!

This is a nice use of the or operator.

Now what happens if you lose the line?

Your code just keeps doing what it was doing... hopefully turning!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 78 of 237



Note 1: I'm using 1 and 0 rather than True and False.

Note 2: The Error value is a measure of how far off-
center the bot is.

Quiz 2 - Get Logical

Question 1: You used the Python operator or in the previous Objective. Take a look at logical operators in your Toolbox if needed
to answer this:

Which 3 of the following are True?

done True or False

close True and False

done True and True

close False or False

done False or True

Question 2: What is printed by the following?

for i in range(5):
    if i < 2:
        print('A', end='.')
    elif i > 3:
        print('B', end='.')
    else:
        print('C', end='.')

done A.A.C.C.B.

close A A C B B

close A.A.B.C.C.

close A.B.C.C.B.

Objective 5 - Sharpen Your Sensors

Extracting Information from the Sensors
With 5 sensors you can detect much more than just a Left or Right edge.

How many "steps" off-center can you detect?
...it depends on the width of the line of course!

Run your last program, and observe the Line Sensor LEDs as your bot
moves across the line.

What are all the sensor combinations you see while following a line?

Example: My Collected Data

Using standard 3/4" black electrical tape on a white surface, I got the
following:

  Line Pos     LEDs (vals)     Error  
Right (0,0,0,0,1) +5

↑ (0,0,0,1,1) +4
¦ (0,0,1,1,1) +3
↓ (0,0,0,1,0) +2

Right (0,0,1,1,0) +1
Center (0,1,1,1,0) 0
Center (0,0,1,0,0) 0

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 79 of 237



  Line Pos     LEDs (vals)     Error  
Left (0,1,1,0,0) -1

↑ (0,1,0,0,0) -2
¦ (1,1,1,0,0) -3
↓ (1,1,0,0,0) -4

Left (1,0,0,0,0) -5

As the table above shows, I can detect 5 steps of off-center in both Left and Right directions.

Do your results agree?

Write code to print sensor tuples to the console.

CodeTrek:

 1  from botcore import *
 2  
 3  SPEED = 50
 4  TURN_FACTOR = 0.2
 5  
 6  prev_vals = None  

 7  
 8  motors.enable(True)
 9  
10  while True:
11      vals = ls.check(2000)
12      leds.ls(vals)
13  
14      # Print the sensor data when it changes
15      if vals != prev_vals:
16          print(vals)
17          prev_vals = vals  # Save as "previous" value
18      

19  
20      if vals[0]:
21          # Hit left --> turn left
22          motors.run(LEFT, SPEED * TURN_FACTOR)
23          motors.run(RIGHT, SPEED)
24      elif vals[4]:
25          # Hit right --> turn right
26          motors.run(LEFT, SPEED)
27          motors.run(RIGHT, SPEED * TURN_FACTOR)
28      elif vals[1] or vals[2] or vals[3]:
29          # Go straight only if on line
30          motors.run(LEFT, SPEED)
31          motors.run(RIGHT, SPEED)
32  

Goal:

Add a print() statement to your code to show the line sensor vals.

BUT only display new values when they've changed!

Use this variable to keep track of the previous vals

Initialize to None.
Each time you read the line sensors, you'll save the results here.

Print the data

But only if it has changed!

The very first time, prev_vals == None so you will definitely print.
After that, you print only if the vals are different than last time.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 80 of 237



Tools Found: CodeBot LEDs, Print Function, tuple, Line Sensors, Variables, None

Solution:

 1  from botcore import *
 2  
 3  SPEED = 50
 4  TURN_FACTOR = 0.2
 5  prev_vals = None
 6  
 7  motors.enable(True)
 8  
 9  while True:
10      vals = ls.check(2000)
11      leds.ls(vals)
12      if vals != prev_vals:
13          print(vals)
14          prev_vals = vals
15  
16      if vals[0]:
17          # Hit left --> turn left
18          motors.run(LEFT, SPEED * TURN_FACTOR)
19          motors.run(RIGHT, SPEED)
20      elif vals[4]:
21          # Hit right --> turn right
22          motors.run(LEFT, SPEED)
23          motors.run(RIGHT, SPEED * TURN_FACTOR)
24      elif vals[1] or vals[2] or vals[3]:
25          # Go straight only if on line
26          motors.run(LEFT, SPEED)
27          motors.run(RIGHT, SPEED)
28  

Objective 6 - Proportional Data

Proportional Data
Use your data about the line sensors to tune the turning so your bot can go faster while
staying on the line.

A weakness of your Line Following code is that it always uses the same turning
force.

If you have some not too curvy sections, you'd rather it turn gently.
But if you have sharp bends, you need it to turn hard!

Instead of always using the same turning force, can you turn in proportion to how
far off-center CodeBot is?

Refer to your table of sensor data from the last Objective.

When you get new vals from the line sensors you need to find the corresponding
Error number.
This could be done by searching through a list, like you did in the Line Sensors mission. (Remember searching for "N", "S",
"E", "W"?)

But there is a better way...

A Python dictionary! Dictionaries are an excellent choice when you need to look-up values from a table.

The keys will be tuples straight from ls.check()
The values will be the Error int numbers from your table.

Create a new file!

Use the File → New File menu to create a new file called "line_follower.py"

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 81 of 237



CodeTrek:

 1  from botcore import *
 2  
 3  SPEED = 50
 4  TURN_FACTOR = 0.2
 5  
 6  ls_err = {
 7      (0,0,1,0,0) : 0,
 8      (0,1,1,1,0) : 0,
 9  
10      (0,0,1,1,0) : 1,  

11      (0,0,0,1,0) : 2,
12      (0,0,1,1,1) : 3,
13      (0,0,0,1,1) : 4,
14      (0,0,0,0,1) : 5,
15  
16      (0,1,1,0,0) : -1,
17      (0,1,0,0,0) : -2,
18      (1,1,1,0,0) : -3,
19      (1,1,0,0,0) : -4,
20      (1,0,0,0,0) : -5,
21  }
22  
23  motors.enable(True)
24  
25  while True:
26      vals = ls.check(2000)
27      leds.ls(vals)
28  
29      # Look up error value in dictionary
30      err = ls_err[vals]
31      print(vals, err)  

32  
33      # Use error value to turn (simple version for now...)
34      if err < 0:
35          # Line on left --> turn left
36          motors.run(LEFT, SPEED * TURN_FACTOR)
37          motors.run(RIGHT, SPEED)
38      elif err > 0:
39          # Line on right --> turn right
40          motors.run(LEFT, SPEED)
41          motors.run(RIGHT, SPEED * TURN_FACTOR)
42      else:
43          # Go straight only if zero error
44          motors.run(LEFT, SPEED)
45          motors.run(RIGHT, SPEED)
46  

Hints:

Dictionary Format

Your Data Dictionary

Comprised of {key: value, } pairs that map the line sensor readings to Error numbers.
This is the data table from the previous Objective, encoded as a Python dictionary.

Read about Python's built-in dictionary type for more information.

Just like accessing items from a list or tuple, you can use square brackets to lookup values in a dictionary.

value = dict[key]

But what happens if the key is not in the dictionary?
Don't worry about that for now... just code it as shown!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 82 of 237



ls_err = {
    # tuple : int
    (0,0,1,0,0) : 0,
    (0,1,1,1,0) : 0,

    (0,0,1,1,0) : 1,
    ...
}

Expect a KeyError!

This Objective is leading you to experience a runtime error.

Your dictionary doesn't include every possible tuple the line sensors can return.

When a key lookup fails, you'll see a KeyError occur, which will stop your bot in its tracks!

Goals:

Encode your sensor data table as a dictionary

Run the Line Following course using dictionary lookup ls_err[vals] to retrieve error values for steering.

Tools Found: Line Sensors, dictionary, tuple, int, list

Solution:

 1  from botcore import *
 2  
 3  SPEED = 30
 4  TURN_FACTOR = 0.1
 5  
 6  ls_err = {
 7      (0,0,1,0,0) : 0,
 8      (0,1,1,1,0) : 0,
 9  
10      (0,0,1,1,0) : 1,
11      (0,0,0,1,0) : 2,
12      (0,0,1,1,1) : 3,
13      (0,0,0,1,1) : 4,
14      (0,0,0,0,1) : 5,
15  
16      (0,1,1,0,0) : -1,
17      (0,1,0,0,0) : -2,
18      (1,1,1,0,0) : -3,
19      (1,1,0,0,0) : -4,
20      (1,0,0,0,0) : -5,
21  }
22  
23  motors.enable(True)
24  
25  while True:
26      vals = ls.check(2000)
27      leds.ls(vals)
28  
29      # Look up error value in dictionary
30      err = ls_err[vals]
31      print(vals, err)
32  
33      # Use error value to turn (simple version for now...)
34      if err < 0:
35          # Line on left --> turn left
36          motors.run(LEFT, SPEED * TURN_FACTOR)
37          motors.run(RIGHT, SPEED)
38      elif err > 0:
39          # Line on right --> turn right
40          motors.run(LEFT, SPEED)
41          motors.run(RIGHT, SPEED * TURN_FACTOR)
42      else:
43          # Go straight only if zero error

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 83 of 237



44          motors.run(LEFT, SPEED)
45          motors.run(RIGHT, SPEED)
46  

Quiz 3 - Sensor Dictionaries

Question 1: Given the dictionary: basket = {'apples': 12, 'bananas': 5}

What is basket['apples'] ?

done 12

close 5

close KeyError

close bananas

Question 2: Given the dictionary: basket = {'apples': 12, 'bananas': 5}

What is basket['oranges'] ?

done KeyError

close 12

close 5

close 0

Question 3: Given the dictionary: basket = {'apples': 12, 'bananas': 5}

What is basket.get('oranges', 0) ?

done 0

close 12

close 5

close KeyError

Objective 7 - Proportional Control

Proportional Control Algorithm

You encountered a KeyError in the last Objective when you hit a combination of line sensors that weren't in your dictionary.

What do you want to happen when "invalid" sensor values are seen?

Well, chances are CodeBot has just overshot a turn. A reasonable response would be to keep turning!

Avoiding KeyError

Review the get() API described in the dictionary tool.

You can provide a default value to be used when the key is not found!
Modify your code to use this method rather than square brackets [ ] to access the dictionary.

Putting the "P" in PID Controller

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 84 of 237

https://en.wikipedia.org/wiki/PID_controller


You are building a Control System. The principles are the same as if you
were building a giant robotic arm that can swing around full-sized car frames,
or creating a navigation system for a massive ship!

You can read more about PID Controllers at the link above, but for now
I'll walk you through creating one in Python for your bot!
Start with the Proportional term, which uses the current err value to
control the amount of turning.
A constant called Kp is multiplied by the err to control the influence of
this term on steering. 

See the CodeTrek for more details!

After you run this code, try tuning the  factor.

Higher values increase the turning power, so you can manage sharper turns.
But turning too hard also has negative consequences...

CodeTrek:

 1  from botcore import *
 2  
 3  SPEED = 30
 4  
 5  # Dictionary mapping {sensors_tuple : error_int}
 6  ls_err = {
 7      (0,0,1,0,0) : 0,
 8      (0,1,1,1,0) : 0,
 9  
10      (0,0,1,1,0) : 1,
11      (0,0,0,1,0) : 2,
12      (0,0,1,1,1) : 3,
13      (0,0,0,1,1) : 4,
14      (0,0,0,0,1) : 5,
15  
16      (0,1,1,0,0) : -1,
17      (0,1,0,0,0) : -2,
18      (1,1,1,0,0) : -3,
19      (1,1,0,0,0) : -4,
20      (1,0,0,0,0) : -5,
21  }
22  
23  def drive(speed, turn_ratio):
24      """Drive, using a fraction of the speed for turning."""
25      # speed: 0-100; turn_ratio: L=-1, R=+1, 0=straight
26      turn_spd = speed * turn_ratio
27      fwd_spd = speed - abs(turn_spd)
28      motors.run(LEFT, fwd_spd + turn_spd)
29      motors.run(RIGHT, fwd_spd - turn_spd)  

30  
31  def apply_control(err):
32      """Control steering based on error"""  

33      Kp = 0.1    # Proportional factor

P = K ​e(t)p

K ​p

A steering function: drive()

This makes it easy to steer using your +/- error value.

Give it a max speed, and use turn_ratio to adjust the steering.
A turn_ratio of 0 will go straight. Do the math!
Remember the abs() built-in?

Control the Action

This is the "brains" of your control algorithm!

It figures out how to drive the motors...
based on the error feedback from the line sensors.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 85 of 237



34      steering = err * Kp  

35      drive(SPEED, steering)
36  
37  motors.enable(True)
38  
39  # In case we start off the line, init with small error to cause turn in big circle.
40  err = 1 

41  
42  # Main Loop
43  while True:
44      # Read the sensors and display on LEDs
45      vals = ls.check(2000)
46      leds.ls(vals)
47  
48      # Lookup error value (default to previous value)
49      err = ls_err.get(vals, err)  

50      print(vals, err)
51  
52      # Control based on error
53      apply_control(err) 

54  

Goals:

Modify your code to use the dictionary get() method for looking up the sensor error value.

Reach Checkpoint 1

Reach Checkpoint 2

Reach Checkpoint 3

Reach Checkpoint 4

Clear all Checkpoints in 3½ minutes or less

Tools Found: Line Sensors, dictionary, API, Built-In Functions

A "proportional" controller.

This is the "P" term of your PID controller. 
err is the instantaneous error  at time 

P = K ​e(t)p
e(t) t

An initial value for err

In case your first dictionary lookup fails!

Dictionary Lookup

Use the get(key, default) method of dictionary objects.

Just like ls_err[key] this will return an item when key is found.
But it has the advantage of returning your supplied default when the lookup fails, rather than causing a KeyError.

Your previous value of err is used as the default, so the bot keeps using the last error value when it loses the line.

Pass the new error value to your control algorithm!

A nice, simple main loop!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 86 of 237



Solution:

 1  from botcore import *
 2  
 3  SPEED = 50
 4  # Dictionary mapping {sensors_tuple : error_int}
 5  ls_err = {
 6      (0,0,1,0,0) : 0,
 7      (0,1,1,1,0) : 0,
 8  
 9      (0,0,1,1,0) : 1,
10      (0,0,0,1,0) : 2,
11      (0,0,1,1,1) : 3,
12      (0,0,0,1,1) : 4,
13      (0,0,0,0,1) : 5,
14  
15      (0,1,1,0,0) : -1,
16      (0,1,0,0,0) : -2,
17      (1,1,1,0,0) : -3,
18      (1,1,0,0,0) : -4,
19      (1,0,0,0,0) : -5,
20  }
21  
22  def drive(speed, turn_ratio):
23      """Drive, using a fraction of the speed for turning."""
24      # speed: 0-100; turn_ratio: L=-1, R=+1, 0=straight
25      turn_spd = speed * turn_ratio
26      fwd_spd = speed - abs(turn_spd)
27      motors.run(LEFT, fwd_spd + turn_spd)
28      motors.run(RIGHT, fwd_spd - turn_spd)
29  
30  def apply_control(err):
31      """Control steering based on error"""
32      Kp = 0.1    # Proportional factor
33      steering = err * Kp
34      drive(SPEED, steering)
35  
36  motors.enable(True)
37  
38  # In case we start off the line, init with small error to cause turn in big circle.
39  err = 1
40  
41  # Main Loop
42  while True:
43      # Read the sensors and display on LEDs
44      vals = ls.check(2000)
45      leds.ls(vals)
46  
47      # Lookup error value (default to previous value)
48      err = ls_err.get(vals, err)
49      print(vals, err)
50  
51      # Control based on error
52      apply_control(err)
53  

Objective 8 - Stats on the Line

Line Up!
The final challenge of this Mission is to complete the full course at the fastest speed you can manage.

To do that you'll need to add the remaining terms to your PID Controller algorithm.

Proportional: The "P" in PID

Your algorithm already uses the proportial term. 

This lets your CodeBot react to its present (instantaneous) position on the line.

Integral: The "I" in PID

= K ​e(t)p

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 87 of 237



The integral term accumulates past error values over a period of time. 

This gives your CodeBot some "memory" about the what the line has been doing in the past.

Derivative: The "D" in PID

The derivative term represents the rate of change in the error value. 

This lets your CodeBot predict the future based on the trend in the line.

Remembering History, Tracking Trends

Right now your code considers only the current value of error. Is that all the data your sensors have to offer? No way! As time
passes you can collect more insights from those sensors!

You will need to start collecting statistics on the error value.

Follow the CodeTrek to get started!

CodeTrek:

 1  from botcore import *
 2  import time
 3  
 4  SPEED = 50
 5  
 6  # Dictionary mapping {sensors_tuple : error_int}
 7  ls_err = {
 8      (0,0,1,0,0) : 0,
 9      (0,1,1,1,0) : 0,
10  
11      (0,0,1,1,0) : 1,
12      (0,0,0,1,0) : 2,
13      (0,0,1,1,1) : 3,
14      (0,0,0,1,1) : 4,
15      (0,0,0,0,1) : 5,
16  
17      (0,1,1,0,0) : -1,
18      (0,1,0,0,0) : -2,
19      (1,1,1,0,0) : -3,
20      (1,1,0,0,0) : -4,
21      (1,0,0,0,0) : -5,
22  }
23  
24  def drive(speed, turn_ratio):
25      """Drive, using a fraction of the speed for turning."""
26      # speed: 0-100; turn_ratio: L=-1, R=+1, 0=straight
27      turn_spd = speed * turn_ratio
28      fwd_spd = speed - abs(turn_spd)
29      motors.run(LEFT, fwd_spd + turn_spd)
30      motors.run(RIGHT, fwd_spd - turn_spd)
31  
32  
33  def apply_control(err):
34      """Control steering based on error"""
35      Kp = 0.1    # Proportional factor
36      steering = err * Kp
37      drive(SPEED, steering)
38  
39  # Error statistics (global state variables)
40  err_avg = 0
41  err_trend = 0
42  t_prev = 0  # ms time of previous sample
43  

44  

= K ​ e(t)dti ∫

= K ​ ​d dt
de(t)

Initialize your "statistics" variables.

These need to exist for the life of the program, so they must be defined outside of your function.
That means they are global variables, rather than just local to the function.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 88 of 237



45  def collect_stats(err):
46      """Update global stats based on stream of err values"""  

47      
48      # This function updates global variables...
49      
#@3 
50  
51      # Sensor only updates every 10 to 30ms
52      SAMPLE_INTERVAL = 10  # ms
53      HISTORY_FACTOR = 0.1  # Higher is more forgetful
54      

55  
56      t_now = time.ticks_ms()
57      if t_now - t_prev > SAMPLE_INTERVAL:
58          t_prev = t_now 

59          err_avg_prev = err_avg
60          # Exponentially weighted moving average
61          err_avg = err * HISTORY_FACTOR + err_avg * (1 - HISTORY_FACTOR)
62          # Trend is based on last 2 average values
63          err_trend = (err_avg - err_avg_prev) * 10  

64  
65          # DEBUG - dump some variables to the console.
66          print(t_now, err, err_avg, err_trend)  

67  
68  
69  motors.enable(True)
70  
71  # In case we start off the line, set small error to cause turn in big circle.
72  err = 1
73  
74  while True:
75      # Read the sensors and display on LEDs

A new function that gathers statistics on your Error values.

You'll call it continuously with the latest err value.
It should update the global variables above.

Some constants this function needs. More explanation below.

Right on Schedule

These statistics are collected over time, and it's important that the time period of each "sample" is consistent.

This code checks the current time ticks_ms() and the if statement makes sure the stats are
updated only if SAMPLE_INTERVAL milliseconds have elapsed since the last sample time t_prev.

Be sure to add import time at the top of your file!

Stats

err_avg is an Exponentially Weighted Moving Average. That means more recent samples have more
influence. 

Think of the HISTORY_FACTOR as a percentage of influence the new sample has against the historical average.

err_trend is the rate of change in Error based on the last two err_avg values.

The x10 scaling factor just helps keep  in a more convenient range.K ​d

Print these variables to the console

This will give you a better feel for the sensor data you are working with!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 89 of 237



76      vals = ls.check(2000)
77      leds.ls(vals)
78  
79      # Lookup error value (default to previous value)
80      err = ls_err.get(vals, err)
81  
82      # Collect stats and apply controls
83      collect_stats(err)
84      apply_control(err) 

85  

Hint:

Fixing the UnboundLocalError

This error occurs when a function tries to read a variable which has never been assigned to.

In Python, a variable is said to "bind" a name to a value. So "unbound" really means "no value assigned."

But you DID assign values! These are globals, right?!?

If a function ever assigns to a variable, then it's considered a local variable by default.

You have to explicitly declare those variables as global, using the global keyword:

global t_prev, err_avg, err_trend

Put that line at the start of your function, and the global variables will be used.

Goals:

Follow the CodeTrek to add a collect_stats() function

Encounter an UnboundLocalError when you RUN the code!

Modify your code to fix the error. See the global tool and check emoji_objectsHints for guidance.

Print Stats to the Console

In your collect_stats() function, print milliseconds, current error, average error, and trend.

(Print just the values separated by spaces)

Reach Checkpoint 1

Watch your debug console along the way!

Tools Found: Locals and Globals, Print Function, Variables, Functions, Constants

Solution:

 1  from botcore import *
 2  import time
 3  
 4  SPEED = 50
 5  
 6  # Dictionary mapping {sensors_tuple : error_int}
 7  ls_err = {
 8      (0,0,1,0,0) : 0,
 9      (0,1,1,1,0) : 0,
10  
11      (0,0,1,1,0) : 1,

Don't forget to call collect_stats(err) as the sensor values stream by!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 90 of 237



12      (0,0,0,1,0) : 2,
13      (0,0,1,1,1) : 3,
14      (0,0,0,1,1) : 4,
15      (0,0,0,0,1) : 5,
16  
17      (0,1,1,0,0) : -1,
18      (0,1,0,0,0) : -2,
19      (1,1,1,0,0) : -3,
20      (1,1,0,0,0) : -4,
21      (1,0,0,0,0) : -5,
22  }
23  
24  def drive(speed, turn_ratio):
25      """Drive, using a fraction of the speed for turning."""
26      # speed: 0-100; turn_ratio: L=-1, R=+1, 0=straight
27      turn_spd = speed * turn_ratio
28      fwd_spd = speed - abs(turn_spd)
29      motors.run(LEFT, fwd_spd + turn_spd)
30      motors.run(RIGHT, fwd_spd - turn_spd)
31  
32  
33  def apply_control(err):
34      """Control steering based on error"""
35      Kp = 0.1    # Proportional factor
36      steering = err * Kp
37      drive(SPEED, steering)
38  
39  # Error statistics (global state variables)
40  err_avg = 0
41  err_trend = 0
42  t_prev = 0  # ms time of previous sample
43  
44  def collect_stats(err):
45      """Update global stats based on stream of err values"""
46      global t_prev, err_avg, err_trend
47      # Sensor only updates every 10 to 30ms
48      SAMPLE_INTERVAL = 10  # ms
49      HISTORY_FACTOR = 0.1  # Higher is more forgetful
50  
51      t_now = time.ticks_ms()
52      if t_now - t_prev > SAMPLE_INTERVAL:
53          t_prev = t_now
54          err_avg_prev = err_avg
55          # Exponentially weighted moving average
56          err_avg = err * HISTORY_FACTOR + err_avg * (1 - HISTORY_FACTOR)
57          # Trend is based on last 2 average values
58          err_trend = (err_avg - err_avg_prev) * 10
59  
60          # DEBUG - dump our variables to the console.
61          print(t_now, err, err_avg, err_trend)
62  
63  
64  motors.enable(True)
65  
66  # In case we start off the line, set small error to cause turn in big circle.
67  err = 1
68  
69  while True:
70      # Read the sensors and display on LEDs
71      vals = ls.check(2000)
72      leds.ls(vals)
73  
74      # Lookup error value (default to previous value)
75      err = ls_err.get(vals, err)
76  
77      # Collect stats and apply controls
78      collect_stats(err)
79      apply_control(err)
80  

Quiz 4 - Locals and Globals

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 91 of 237



Question 1: What is the purpose of the global statement?

done To declare which variables inside a function should be treated as globals.

close To declare that your program can be used internationally.

close To declare that a function can be accessed globally.

Question 2: What is the output of the following?

name = 'Fred'

def foo():
    print(name)

foo()    

done Fred

close UnboundLocalError

close Name?

Question 3: What is the output of the following?

name = 'Fred'

def foo():
    print(name, end=',')
    name = 'Jill'
    print(name)

foo()    

done UnboundLocalError

close Fred,

close Jill

close Fred, Jill

Question 4: What is the output of the following?

name = 'Fred'

def foo():
    global name
    print(name, end=',')
    name = 'Jill'
    print(name)

foo()    

done Fred,Jill

close UnboundLocalError

close Fred,Fred

close Jill,Jill

Objective 9 - Line Drive!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 92 of 237



Line Drive!
All the pieces are now in place for your best Line Following algorithm yet!

Put it all together in your apply_control() function, bringing in error statistics for the remaining two terms in your PID Controller
algorithm.

As usual, the CodeTrek has the details!

Tuning the Constants

There are a number of constants in this version of the code. It's up to you to find the best settings for those, and that will take some
experimentation.

The ideal settings depend on what type of Line Course you are up against.
Settings that give max speed on straightaways are usually not ideal for tight curves, and vice-versa!

To complete this Objective you will need to tune those constants to run the Classroom Course in top form.

CodeTrek:

 1  from botcore import *
 2  import time
 3  
 4  SPEED = 70
 5  
 6  # Dictionary mapping {sensors_tuple : error_int}
 7  ls_err = {
 8      (0,0,1,0,0) : 0,
 9      (0,1,1,1,0) : 0,
10  
11      (0,0,1,1,0) : 1,
12      (0,0,0,1,0) : 2,
13      (0,0,1,1,1) : 3,
14      (0,0,0,1,1) : 4,
15      (0,0,0,0,1) : 5,
16  
17      (0,1,1,0,0) : -1,
18      (0,1,0,0,0) : -2,
19      (1,1,1,0,0) : -3,
20      (1,1,0,0,0) : -4,
21      (1,0,0,0,0) : -5,
22  }
23  
24  def drive(speed, turn_ratio):
25      """Drive, using a fraction of the speed for turning."""
26      # speed: 0-100; turn_ratio: L=-1, R=+1, 0=straight
27      turn_spd = speed * turn_ratio
28      fwd_spd = speed - abs(turn_spd)
29      motors.run(LEFT, fwd_spd + turn_spd)
30      motors.run(RIGHT, fwd_spd - turn_spd)
31  
32  def apply_control(err):
33      """Control steering based on error"""
34      Kp = 0.1  # Proportional factor (current error)
35      Ki = 0.01  # Integral factor (average error)
36      Kd = 0.07  # Derivative factor (trend)
37      steering = err * Kp + err_avg * Ki + err_trend * Kd  

38  
39      # Limit steering to +/- 1.0
40      if abs(steering) > 1:
41          steering = steering / abs(steering)  

Add the 2 remaining PID terms

You already have the "P", now add the "I" and "D".

This brings in two more constants:  and 
Your err_avg and err_trend are the added control variables.

K ​i K ​d

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 93 of 237



42  
43      speed = SPEED
44      # Slow down when error grows
45      if abs(err_avg) > 0.1:
46          speed = speed * 0.6  

47  
48      drive(speed, steering)
49  
50  # Error statistics (global state variables)
51  err_avg = 0
52  err_trend = 0
53  t_prev = 0  # ms time of previous sample
54  
55  def collect_stats(err):
56      """Update global stats based on stream of err values"""
57      global t_prev, err_avg, err_trend
58      # Sensor only updates every 10 to 30ms
59      SAMPLE_INTERVAL = 10  # ms
60      HISTORY_FACTOR = 0.1  # Higher is more forgetful
61  
62      t_now = time.ticks_ms()
63      if t_now - t_prev > SAMPLE_INTERVAL:
64          t_prev = t_now
65          err_avg_prev = err_avg
66          # Exponentially weighted moving average
67          err_avg = err * HISTORY_FACTOR + err_avg * (1 - HISTORY_FACTOR)
68          # Trend is based on last 2 average values
69          err_trend = (err_avg - err_avg_prev) * 10
70  
71  
72  motors.enable(True)
73  
74  # In case we start off the line, set small error to cause turn in big circle.
75  err = 1
76  
77  while True:
78      # Read the sensors and display on LEDs
79      vals = ls.check(2000)
80      leds.ls(vals)
81  
82      # Lookup error value (default to previous value)
83      err = ls_err.get(vals, err)
84  
85      # Collect stats and apply controls
86      collect_stats(err)
87      apply_control(err)
88  

Goals:

Complete your PID Controller by using err_avg and err_trend in your apply_control() function.

Limit the Turning Factor

Your drive() function expects a turn_ratio between -1.0 and +1.0

Depending on the K-factors above, you could exceed this! Make sure that can't happen.

Bonus Feature!

Tap the brakes if your error grows.

You could get a lot more sophisticated with this, but even a simple speed decrease
will allow your top speed to be much higher.

Note: You should really make new constants for these braking parameters, right?

Maybe "BRAKING_THRESHOLD" and "BRAKING_SPEED_FACTOR"

Even more parameters to tune...

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 94 of 237



Reach Checkpoint 1

Reach CheckPoint 2

Reach CheckPoint 3

Reach CheckPoint 4

Reach CheckPoint 5

Reach CheckPoint 6

Complete the course within 5 minutes!

Tools Found: Constants, Variables

Solution:

 1  from botcore import *
 2  import time
 3  
 4  SPEED = 70
 5  
 6  # Dictionary mapping {sensors_tuple : error_int}
 7  ls_err = {
 8      (0,0,1,0,0) : 0,
 9      (0,1,1,1,0) : 0,
10  
11      (0,0,1,1,0) : 1,
12      (0,0,0,1,0) : 2,
13      (0,0,1,1,1) : 3,
14      (0,0,0,1,1) : 4,
15      (0,0,0,0,1) : 5,
16  
17      (0,1,1,0,0) : -1,
18      (0,1,0,0,0) : -2,
19      (1,1,1,0,0) : -3,
20      (1,1,0,0,0) : -4,
21      (1,0,0,0,0) : -5,
22  }
23  
24  def drive(speed, turn_ratio):
25      """Drive, using a fraction of the speed for turning."""
26      # speed: 0-100; turn_ratio: L=-1, R=+1, 0=straight
27      turn_spd = speed * turn_ratio
28      fwd_spd = speed - abs(turn_spd)
29      motors.run(LEFT, fwd_spd + turn_spd)
30      motors.run(RIGHT, fwd_spd - turn_spd)
31  
32  def apply_control(err):
33      """Control steering based on error"""
34      Kp = 0.1  # Proportional factor (current error)
35      Ki = 0.01  # Integral factor (average error)
36      Kd = 0.07  # Derivative factor (trend)
37      steering = err * Kp + err_avg * Ki + err_trend * Kd
38  
39      # Limit steering to +/- 1.0
40      if abs(steering) > 1:
41          steering = steering / abs(steering)
42  
43      speed = SPEED
44      # Slow down when error grows
45      if abs(err_avg) > 0.5:
46          speed = speed * 0.6
47  
48      drive(speed, steering)
49  
50  # Error statistics (global state variables)
51  err_avg = 0
52  err_trend = 0
53  t_prev = 0  # ms time of previous sample
54  
55  def collect_stats(err):

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 95 of 237



online_prediction

56      """Update global stats based on stream of err values"""
57      global t_prev, err_avg, err_trend
58      # Sensor only updates every 10 to 30ms
59      SAMPLE_INTERVAL = 10  # ms
60      HISTORY_FACTOR = 0.1  # Higher is more forgetful
61  
62      t_now = time.ticks_ms()
63      if t_now - t_prev > SAMPLE_INTERVAL:
64          t_prev = t_now
65          err_avg_prev = err_avg
66          # Exponentially weighted moving average
67          err_avg = err * HISTORY_FACTOR + err_avg * (1 - HISTORY_FACTOR)
68          # Trend is based on last 2 average values
69          err_trend = (err_avg - err_avg_prev) * 10
70  
71  
72  motors.enable(True)
73  
74  # In case we start off the line, set small error to cause turn in big circle.
75  err = 1
76  
77  while True:
78      # Read the sensors and display on LEDs
79      vals = ls.check(2000)
80      leds.ls(vals)
81  
82      # Lookup error value (default to previous value)
83      err = ls_err.get(vals, err)
84  
85      # Collect stats and apply controls
86      collect_stats(err)
87      apply_control(err)
88  

Mission 10 - Fido Fetch
Train your CodeBot to fetch using a dictionary of commands!

Objective 1 - R-Ready

The first step is to find out if Fido is online
Create a new file!

Use the File → New File menu to create a new file called "fido.py".

Your goal is to train Fido to follow commands

Fido will need to follow commands and explore the cafeteria to complete this mission.

Fido's first command is: 'status'

When you send the 'status' command Fido will respond with 'r-ready' if he is online.

Open the Debug Console Panel ☰

That's where you'll enter commands for Fido!

Follow the CodeTrek to check Fido's 'status'

CodeTrek:

 1  from botcore import *
 2  

CODETREK

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 96 of 237



volume_up

 3  response = 'r-ready'

 4  
 5  while True:

 6      # wait for an input from the console
 7      command = input("Input Command: ")

 8  
 9      if command == 'status':

10          print(response)

Goals:

Make a command variable that takes input from the console.

Open the Debug Console to interact with Fido

Enter the 'status' command.

Fido should output: 'r-ready'

Tools Found: Variables, Loops, REPL, Branching

Solution:

 1  from botcore import *
 2  
 3  response = 'r-ready'
 4  
 5  while True:
 6      # wait for an input from the console
 7      command = input("Input Command: ")
 8  
 9      if command == 'status':
10          print(response)

Objective 2 - Fido Speak

Now teach Fido to Speak
The next command for Fido is: 'speak'

Your CodeBot should play a short tone when you command Fido to 'speak'.
After a short tone Fido should go silent.

Create a response variable to hold Fido's response to your command.

Use a loop to keep taking in new commands forever.

input a command for Fido with the REPL console window.

Use a branching if to perform an action if the command is 'status'.

Finally, add a print to output the response variable to the console!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 97 of 237



Remember, to play a tone you should use the spkr.pitch() function

See the speaker tool for details.

CodeTrek:

 1  from botcore import *
 2  from time import sleep

 3  
 4  response = 'r-ready'
 5  response2 = 440

 6  
 7  while True:
 8      # wait for an input from the console
 9      command = input("Input Command: ")
10  
11      if command == 'status':
12          print(response)
13  
14      elif command == 'speak':
15          spkr.pitch(response2)
16          sleep(0.5)
17          spkr.off()

Goal:

Enter the 'speak' command 5 times to get Fido to bark.

Tools Found: Speaker, Time Module, Data Types, int

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  response = 'r-ready'
 5  response2 = 440
 6  
 7  while True:
 8      # wait for an input from the console
 9      command = input("Input Command: ")
10  
11      if command == 'status':
12          print(response)
13  
14      elif command == 'speak':
15          spkr.pitch(response2)
16          sleep(0.5)
17          spkr.off()

Objective 3 - Organized Commands

You will need a pause to let your speaker 'speak'!

response2 is a different type for the 'speak' command.

response2 is an integer.

1. Set the speaker to value2
2. Delay for 0.5 seconds 
3. Turn off the speaker

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 98 of 237



view_list

Fido will need quite a few more commands
That might get hard to keep track of

Is there an easy way to keep track of Fido's commands?

Yes, of course! It's Python after all 😎

You can use a dictionary!

A dictionary is a collection of key : value pairs.
The keys can even be human readable strings like Fido's commands!

The dictionary below has a single key : value pair.

commands = {'status': 'r-ready'}

'status' is the key
'r-ready' is the value for the 'status' key

You can use Fido's commands as keys in a dictionary.

A dictionary has many benefits:

1. It is super readable because it shows all the key:value mappings in one place.
2. It lets you iterate through all of the keys and/or values if needed.
3. You can store any Python type as the value.
4. Looking up values in a dictionary is more efficient for the CPU than searching through a list of items to find a match.

Use the CodeTrek to create a dictionary for tracking Fido's commands

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # create a dictionary
 5  commands = {

 6      'status': 'r-ready',

 7      'speak': 440,

 8  }
 9  
10  while True:

CODETREK

Create a new dictionary named commands.

For the first element:

The command (key) is 'status'
The response (value) is 'r-ready'

This is a key:value pair!

You can create a dictionary on multiple lines for readability.

key:value pairs must be separated by commas.

A style convention is to place a comma after the last element in a multi-line dictionary or list.

This comma is not required, but it makes it a little easier to add more lines later.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 99 of 237



11      # wait for an input from the console
12      command = input("Input Command: ")
13  
14      response = commands[command]

15  
16      if command == 'status':
17          print(response)

18  
19      elif command == 'speak':
20          spkr.pitch(response)

21          sleep(0.5)
22          spkr.off()
23  

Goals:

Create a commands dictionary.

There are multiple ways to create a dictionary but use curly braces { } for now!

Create a new response variable that gets a value from the commands dictionary.

Check to see that Fido is still 'r-ready' using the 'status' command.

Tools Found: dictionary, str, Readability, Iterable, Data Types, Efficiency, CPU and Peripherals, Variables, int

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # create a dictionary
 5  commands = {
 6      'status': 'r-ready',
 7      'speak': 440,
 8  }
 9  
10  while True:
11      # wait for an input from the console
12      command = input("Input Command: ")
13  
14      response = commands[command]
15  
16      if command == 'status':
17          print(response)
18  
19      elif command == 'speak':
20          spkr.pitch(response)

You can look up the value of a key:value pair like so:

value = dictionary[key]

The value in a key:value pair can be any type.

This one is a string.
The next command's response value is an integer.

A dictionary can contain a mix of many different data types. Even other dictionaries!!

Don't forget to change response2 to response.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 100 of 237



21          sleep(0.5)
22          spkr.off()

Quiz 1 - Efficiency

Question 1: Regarding efficiency of code, according to Sir Tony Hoare, what is the "root of all evil"?

done premature optimization

close optimization

close money

close Java

Question 2: A dictionary contains pairs of what?

done keys and values

close trousers

close lists and items

close keys

close values

Objective 4 - Fido Come

Time to teach Fido to: 'come'
Fido should move forward with both motors when you send the 'come' command

Try adding the 'come' command after the dictionary is already created.

You can add a key:value pair with this format:
dictionary['key'] = value

This time make the value of the 'come' key be a 2-item list

The list should contain speeds for the left and right motors.
Index 0 will be the LEFT speed.
Index 1 will be the RIGHT speed.

commands['come'] = [30, 30]

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  #?? Enable the motors here

 5  
 6  # create a dictionary
 7  commands = {
 8      'status': 'r-ready',

Enable your robo-companion's motors.

This will allow you to change its motion with commands.
See Hints if you need help!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 101 of 237



 9      'speak': 440,
10  }
11  
12  # add new commands
13  commands['come'] = [30, 30]

14  
15  while True:
16      # wait for an input from the console
17      command = input("Input Command: ")
18  
19      # use the command as the key
20      response = commands[command]
21  
22      if command == 'status':
23          print(response)
24  
25      elif command == 'speak':
26          spkr.pitch(response)
27          sleep(0.5)
28          spkr.off()
29      
30      elif command == 'come':
31          # left is index 0, right is index 1
32          motors.run(LEFT, response[0])
33          motors.run(??)

Hints:

To enable the motors: motors.enable(True)

Remember to move both motors forward you need to:

1. Enable the motors: 'motors.enable(True)'
2. Set the value of the 'LEFT' motor: 'motors.run(LEFT, 30)'
3. Set the value of the 'RIGHT' motor: 'motors.run(RIGHT, 30)'

Goals:

Add the 'come' command to the commands dictionary as a list of two numbers.

Use the 'come' command to get Fido to move forward and get a delicious treat!

Tools Found: dictionary, list, Motors, Data Types, Parameters, Arguments, and Returns

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  
 6  # create a dictionary
 7  commands = {
 8      'status': 'r-ready',
 9      'speak': 440,
10  }

Add a new 'come' command to the commands dictionary.

This is the format to add a new key:value pair
The 'come' command has a list value type

Can you fill in the missing motor parameters?

1. Index 0 is the LEFT motor value
2. Index 1 is the RIGHT motor value

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 102 of 237



11  
12  # add new commands
13  commands['come'] = [30, 30]
14  
15  while True:
16      # wait for an input from the console
17      command = input("Input Command: ")
18  
19      # use the command as the key
20      response = commands[command]
21  
22      if command == 'status':
23          print(response)
24  
25      elif command == 'speak':
26          spkr.pitch(response)
27          sleep(0.5)
28          spkr.off()
29      
30      elif command == 'come':
31          # left is index 0, right is index 1
32          motors.run(LEFT, response[0])
33          motors.run(RIGHT, response[1])

Objective 5 - Fido Stay

Whoa, stay Fido stay!
Fido's next command is: 'stay'

Fido should stop moving when he gets the 'stay' command.
You still want to keep the motors enabled when you stop

For the 'stay' command you should try something new

Make the value for the 'stay' key:value pair be a function

def fido_stay():
    ...

commands['stay'] = fido_stay

Wait, you can do that???

Yes! A function is an object just like a string or list in Python.

And since a dictionary can store any type of value...

Pro Tip

Got super fast typing skills? For a faster way to send commands to Fido, use the REPL up/down arrow capability!

Try using your keyboard ↑ and ↓ arrow keys to browse previous commands!
Just hit ENTER when you want to execute a command.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  
 6  def set_motors(left, right):
 7      motors.run(LEFT, left)
 8      motors.run(RIGHT, right)

Start with a new set_motors function. 

This lets you pass a left and right parameter to set both motors at the same time!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 103 of 237



 9  
10  # create a dictionary
11  commands = {
12      'status': 'r-ready',
13      'speak': 440,
14  }
15  
16  def fido_stay():
17      set_motors(0, 0)

18  
19  # add a new command
20  commands['come'] = [30, 30]
21  
22  # add a function as a response
23  commands['stay'] = fido_stay

24  
25  while True:
26      # wait for an input from the console
27      command = input("Input Command: ")
28  
29      # use the command as the key
30      response = commands[command]
31  
32      if command == 'status':
33          print(response)
34  
35      elif command == 'speak':
36          spkr.pitch(response)
37          sleep(0.5)
38          spkr.off()
39      
40      elif command == 'come':
41          # left is index 0, right is index 1
42          motors.run(LEFT, response[0])
43          motors.run(RIGHT, response[1])
44  
45      elif command == 'stay':
46          # the response is a function
47          response()

48  

Goals:

Get Fido moving forward using the 'come' command.

Use the 'stay' command after Fido is moving to get him to stop.

Tools Found: Functions, str, list, dictionary, Data Types, REPL

Solution:

You will have multiple functions that call this one! 

The 'stay' command is simple, it just sets both motors to 0!

The value in a key:value pair can be a function.

A function object can be passed around just like any other data type.

The response for the 'stay' command is a function.

So you can call it just like you would any other function!!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 104 of 237



 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  
 6  def set_motors(left, right):
 7      motors.run(LEFT, left)
 8      motors.run(RIGHT, right)
 9  
10  # create a dictionary
11  commands = {
12      'status': 'r-ready',
13      'speak': 440,
14  }
15  
16  def fido_stay():
17      set_motors(0, 0)
18  
19  # add a new command
20  commands['come'] = [30, 30]
21  
22  # add a function as a response
23  commands['stay'] = fido_stay
24  
25  while True:
26      # wait for an input from the console
27      command = input("Input Command: ")
28  
29      # use the command as the key
30      response = commands[command]
31  
32      if command == 'status':
33          print(response)
34  
35      elif command == 'speak':
36          spkr.pitch(response)
37          sleep(0.5)
38          spkr.off()
39      
40      elif command == 'come':
41          # left is index 0, right is index 1
42          motors.run(LEFT, response[0])
43          motors.run(RIGHT, response[1])
44  
45      elif command == 'stay':
46          # the response is a function
47          response()

Objective 6 - Funky Fido

Adding a function to the dictionary was awesome!
It really shows the power of dictionaries!

Why don't you turn all of your commands into functions?

This will help with readability big time!
You can also remove all those messy branching statements.

When you make big changes to your code it is called refactoring.

Go ahead and refactor your code now!
But when you're done, remember to test everything.

It is easy to make mistakes when you refactor.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 105 of 237



 5  
 6  def set_motors(left, right):
 7      motors.run(LEFT, left)
 8      motors.run(RIGHT, right)
 9  
10  # create a dictionary
11  commands = {}

12  
13  # define a function for each command
14  def fido_status():
15      print("r-ready")

16  
17  def fido_speak():
18      spkr.pitch(440)

19      sleep(0.5)
20      spkr.off()
21  
22  def fido_come():
23      set_motors(30, 30)
24  
25  def fido_stay():
26      set_motors(0, 0)
27  
28  # add your commands
29  commands['status'] = fido_status
30  commands['speak'] = fido_speak
31  commands['come'] = fido_come
32  commands['stay'] = fido_stay

33  
34  while True:
35      # wait for an input from the console
36      command = input("Input Command: ")
37  
38      # use the command as the key
39      response = commands[command]
40  
41      # the response is always a function
42      response()

Goals:

Do not use any if or elif statements in your code.

Define these functions in your code: fido_status, fido_speak, fido_come, fido_stay

Start with an empty dictionary so you can add all your commands the same way.

You could also use this format: commands = dict()

Now that you're using a function for the "status" command, the "r-ready" moves directly into the print() statement.

Don't forget to add the pitch frequency.

It moves out of the dictionary and into the function too!

Now you can add all your commands in one place.

The response will always be a function.

You can call it like this: response()

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 106 of 237



Command Fido to 'speak' 3 times using your new fido_speak function.

Command Fido to 'come' forward using your new fido_come function.

Tools Found: Functions, dictionary, Readability, Branching, Refactoring

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  
 6  def set_motors(left, right):
 7      motors.run(LEFT, left)
 8      motors.run(RIGHT, right)
 9  
10  # create a dictionary
11  commands = {}
12  
13  # define a function for each command
14  def fido_status():
15      print("r-ready")
16  
17  def fido_speak():
18      spkr.pitch(440)
19      sleep(0.5)
20      spkr.off()
21  
22  def fido_come():
23      set_motors(30, 30)
24  
25  def fido_stay():
26      set_motors(0, 0)
27  
28  # add your commands
29  commands['status'] = fido_status
30  commands['speak'] = fido_speak
31  commands['come'] = fido_come
32  commands['stay'] = fido_stay
33  
34  while True:
35      # wait for an input from the console
36      command = input("Input Command: ")
37  
38      # use the command as the key
39      response = commands[command]
40  
41      # the response is always a function
42      response()

Objective 7 - Commands Help!

There are so many commands now!
What if I have so many commands that I can't remember them?

Time to add a 'help' command to Fido

Help commands are very common in command-line programs like this.

They give developers a list of options for the program.

You will need to iterate over the commands dictionary for your 'help' command.

There are multiple ways to iterate over a dictionary.
You should try a for loop. It is super simple!

This will print all keys to the console:

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 107 of 237



for k in commands:
    print(k)

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  
 6  def set_motors(left, right):
 7      motors.run(LEFT, left)
 8      motors.run(RIGHT, right)
 9  
10  # create a commands dictionary
11  commands = {}
12  
13  # define a function for each command
14  def fido_status():
15      print("r-ready")
16  
17  def fido_speak():
18      spkr.pitch(440)
19      sleep(0.5)
20      spkr.off()
21  
22  def fido_come():
23      set_motors(30, 30)
24  
25  def fido_stay():
26      set_motors(0, 0)
27  
28  def fido_help():
29      print("Fido Commands:")
30      # loop through all the keys in the dictionary
31      for k in commands:

32          # print every command to the console
33          print(k)

34  
35  # add your commands
36  commands['status'] = fido_status
37  commands['speak'] = fido_speak
38  commands['come'] = fido_come
39  commands['stay'] = fido_stay
40  commands['help'] = fido_help

41  
42  while True:
43      # wait for an input from the console
44      command = input("Input Command: ")
45  
46      # use the command as the key
47      response = commands[command]
48  
49      # the response is always a function
50      response()

Goals:

Add a for loop to iterate through all the keys in the commands dictionary.

Use the 'help' command to print 'help' to the console.

Use a for loop to iterate through all the keys in the commands dictionary.

print() all key strings to the console window.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 108 of 237



Tools Found: Iterable, dictionary, Loops

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  
 6  def set_motors(left, right):
 7      motors.run(LEFT, left)
 8      motors.run(RIGHT, right)
 9  
10  # create a commands dictionary
11  commands = {}
12  
13  # define a function for each command
14  def fido_status():
15      print("r-ready")
16  
17  def fido_speak():
18      spkr.pitch(440)
19      sleep(0.5)
20      spkr.off()
21  
22  def fido_come():
23      set_motors(30, 30)
24  
25  def fido_stay():
26      set_motors(0, 0)
27  
28  def fido_help():
29      print("Fido Commands:")
30      # loop through all the keys in the dictionary
31      for k in commands:
32          # print every command to the console
33          print(k)
34  
35  # add your commands
36  commands['status'] = fido_status
37  commands['speak'] = fido_speak
38  commands['come'] = fido_come
39  commands['stay'] = fido_stay
40  commands['help'] = fido_help
41  
42  while True:
43      # wait for an input from the console
44      command = input("Input Command: ")
45  
46      # use the command as the key
47      response = commands[command]
48  
49      # the response is always a function
50      response()

Quiz 2 - Function Objects

Question 1: Given the following program, what are 2 statements you could replace # TODO with that would result in "Hello, World"
being printed?

def foo():
    print("Hello, World!")

hello = foo

# Say hello...
# TODO

done foo()

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 109 of 237



memory

done hello()

close hello

close foo

Question 2: What is printed by the following?

d = {'co': 16, 'ol': 25, 'bea': 32, 'ns': 41}
for k in d:
    print(k, end='')

done coolbeans

close 16253241

close co16ol25bea32ns41

close (co,16)(ol,25)(bea,32)(ns,41)

Objective 8 - Losing My Mind

Fido's memory is filling up!
What if you need to clear up some memory space?

Time to add a 'forget' command.

You can use this to make Fido forget a specified command.

To remove an item from a dictionary use the del keyword.

This code will remove the 'speak' command:

del commands['speak']

For this objective you will also be forcing an Error to happen.

You are going to forget a command and then try to send it anyway.

This will cause a KeyError.
A KeyError happens when you try to use a key that doesn't exist in a dictionary.

You may have seen this already if you mis-typed a command!

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  
 6  def set_motors(left, right):
 7      motors.run(LEFT, left)
 8      motors.run(RIGHT, right)
 9  
10  # create a commands dictionary
11  commands = {}
12  
13  # define a function for each command
14  def fido_status():
15      print("r-ready")
16  
17  def fido_speak():
18      spkr.pitch(440)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 110 of 237



19      sleep(0.5)
20      spkr.off()
21  
22  def fido_come():
23      set_motors(30, 30)
24  
25  def fido_stay():
26      set_motors(0, 0)
27  
28  def fido_help():
29      print("Fido Commands:")
30      # loop through all the keys in the dictionary
31      for k in commands:
32          # print every command to the console
33          print(k)
34  
35  def fido_forget():
36      del_key = input("Command to Forget: ")

37      del commands[del_key]

38  
39  # add your commands
40  commands['status'] = fido_status
41  commands['speak'] = fido_speak
42  commands['come'] = fido_come
43  commands['stay'] = fido_stay
44  commands['help'] = fido_help
45  commands['forget'] = fido_forget
46  
47  while True:
48      # wait for an input from the console
49      command = input("Input Command: ")
50  
51      # use the command as the key
52      response = commands[command]
53  
54      # the response is always a function
55      response()

Goals:

Add a 'forget' command and fido_forget function to the commands dictionary after creating it.

a) Use the 'forget' command to del the 'speak' command.

b) Attempt to use the 'speak' command after forgetting it

This must cause a KeyError

Tools Found: dictionary

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  
 6  def set_motors(left, right):
 7      motors.run(LEFT, left)
 8      motors.run(RIGHT, right)

input the command (key) you want to remove from the dictionary.

del is a Python keyword to remove a key:value pair from a dictionary.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 111 of 237



 9  
10  # create a commands dictionary
11  commands = {}
12  
13  # define a function for each command
14  def fido_status():
15      print("r-ready")
16  
17  def fido_speak():
18      spkr.pitch(440)
19      sleep(0.5)
20      spkr.off()
21  
22  def fido_come():
23      set_motors(30, 30)
24  
25  def fido_stay():
26      set_motors(0, 0)
27  
28  def fido_help():
29      print("Fido Commands:")
30      # loop through all the keys in the dictionary
31      for k in commands:
32          # print every command to the console
33          print(k)
34  
35  def fido_forget():
36      del_key = input("Command to Forget: ")
37      del commands[del_key]
38  
39  # add your commands
40  commands['status'] = fido_status
41  commands['speak'] = fido_speak
42  commands['come'] = fido_come
43  commands['stay'] = fido_stay
44  commands['help'] = fido_help
45  commands['forget'] = fido_forget
46  
47  while True:
48      # wait for an input from the console
49      command = input("Input Command: ")
50  
51      # use the command as the key
52      response = commands[command]
53  
54      # the response is always a function
55      response()

Objective 9 - Hunting Treats

Time for treats!
Now its time to send Fido out to explore!

There are robo-dog treats scattered around the cafeteria
Fido WANTS TO EAT TREATS

You should help him out!

Add a few more commands you might before you head out.

Here are a few that could help:
'left'
'right'
'back'
'fast'

Check the hints if you get stuck!

CodeTrek:

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 112 of 237



 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  
 6  def set_motors(left, right):
 7      motors.run(LEFT, left)
 8      motors.run(RIGHT, right)
 9  
10  # create a commands dictionary
11  commands = {}
12  
13  # define a function for each command
14  def fido_status():
15      print("r-ready")
16  
17  def fido_speak():
18      spkr.pitch(440)
19      sleep(0.5)
20      spkr.off()
21  
22  def fido_come():
23      set_motors(30, 30)
24  
25  def fido_stay():
26      set_motors(0, 0)
27  
28  def fido_help():
29      print("Fido Commands:")
30      # loop through all the keys in the dictionary
31      for k in commands:
32          # print every command to the console
33          print(k)
34  
35  def fido_forget():
36      del_key = input("Command to Forget: ")
37      del commands[del_key]
38  
39  def fido_left():
40      set_motors(10, 30)
41  
42  def fido_right():
43      set_motors(30, 10)
44  
45  def fido_back():
46      set_motors(-30, -30)
47  
48  def fido_fast():
49      set_motors(90, 90)
50  
51  # add your commands
52  commands['status'] = fido_status
53  commands['speak'] = fido_speak
54  commands['come'] = fido_come
55  commands['stay'] = fido_stay
56  commands['help'] = fido_help
57  commands['forget'] = fido_forget
58  commands['left'] = fido_left
59  commands['right'] = fido_right
60  commands['back'] = fido_back
61  commands['fast'] = fido_fast

62  
63  while True:
64      # wait for an input from the console
65      command = input("Input Command: ")
66  
67      # use the command as the key
68      response = commands[command]
69  

Add some new commands to Fido to allow you to navigate the cafeteria!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 113 of 237



70      # the response is always a function
71      response()

Hints:

Search near the tables for scraps left by students!

You will need to get Fido moving 'fast' (both motors >80%) to get a good high-five.

Use the Keyboard Shortcuts

Remember, your keyboard ↑ and ↓ arrow keys can recall previous commands!

Just hit ENTER when you want to execute a command.

- Chase Camera view is a good choice for this Objective

Goals:

Get a high five from Fido by lifting the front end of the CodeBot off the ground.

Help Fido find at least 4 robo-dog treats hidden in the cafeteria.

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.enable(True)
 5  
 6  def set_motors(left, right):
 7      motors.run(LEFT, left)
 8      motors.run(RIGHT, right)
 9  
10  # create a commands dictionary
11  commands = {}
12  
13  # define a function for each command
14  def fido_status():
15      print("r-ready")
16  
17  def fido_speak():
18      spkr.pitch(440)
19      sleep(0.5)
20      spkr.off()
21  
22  def fido_come():
23      set_motors(30, 30)
24  
25  def fido_stay():
26      set_motors(0, 0)
27  
28  def fido_help():
29      print("Fido Commands:")
30      # loop through all the keys in the dictionary
31      for k in commands:
32          # print every command to the console
33          print(k)
34  
35  def fido_forget():
36      del_key = input("Command to Forget: ")
37      del commands[del_key]
38  
39  def fido_left():
40      set_motors(10, 30)
41  
42  def fido_right():
43      set_motors(30, 10)
44  
45  def fido_back():
46      set_motors(-30, -30)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 114 of 237



47  
48  def fido_fast():
49      set_motors(90, 90)
50  
51  # add your commands
52  commands['status'] = fido_status
53  commands['speak'] = fido_speak
54  commands['come'] = fido_come
55  commands['stay'] = fido_stay
56  commands['help'] = fido_help
57  commands['forget'] = fido_forget
58  commands['left'] = fido_left
59  commands['right'] = fido_right
60  commands['back'] = fido_back
61  commands['fast'] = fido_fast
62  
63  while True:
64      # wait for an input from the console
65      command = input("Input Command: ")
66  
67      # use the command as the key
68      response = commands[command]
69  
70      # the response is always a function
71      response()

Mission 11 - Airfield Ops
Learn some unique programming concepts to help with airfield runway operations!

Objective 1 - Runway Centerline

The airfield manager needs you to:

Clear the runway of hazards before any aircraft arrive!

It is critical that you stay on the runway!!!

The manager will collect your CodeBot after the runway is clear.

You already wrote code to track a black line...

Do you think you can make your 'bot follow a dashed white line?

CodeTrek:

 1  from botcore import *
 2  
 3  LS_THRESH = 2300
 4  # Max speed = 1.0, 50% is 0.5
 5  SPEED_LIMIT = 0.5

 6  
 7  motors.enable(True)
 8  
 9  def drive(left, right):
10      """Set both motors from -100% to +100%, with a speed limit."""
11      motors.run(LEFT, left * SPEED_LIMIT)
12      # TODO: Don't forget the RIGHT motor!

13  
14  def track_line(ls_vals):

Add a speed limit constant to make adjustments easily.

This function will save some typing later - you can set both motors in one step!

Don't forget to activate the right motor as well!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 115 of 237



15      """Drive based on sensor readings."""  
16      if ls_vals == (1,0,0,0,0):
17          # TODO: drive(?, ?)  

18      elif ls_vals == (1,1,0,0,0):
19          # TODO: drive(?, ?)
20      elif ls_vals == (0,1,0,0,0):
21          # TODO: drive(?, ?)
22      elif ls_vals == (0,1,1,0,0):
23          # TODO: drive(?, ?)
24      elif ls_vals == (0,0,1,0,0):
25          drive(100, 100)

26      elif ls_vals == (0,0,0,0,0):
27          # TODO: drive(?, ?)  

28      elif ls_vals == (0,0,1,1,0):
29          # TODO: drive(?, ?)
30      elif ls_vals == (0,0,0,1,0):
31          # TODO: drive(?, ?)
32      elif ls_vals == (0,0,0,1,1):
33          # TODO: drive(?, ?)
34      elif ls_vals == (0,0,0,0,1):
35          # TODO: drive(?, ?)
36  
37  # Main program loop
38  while True:
39      vals = ls.check(LS_THRESH, ???)  

40      
41      # Turn on the line sensor leds
42      leds.ls(vals)
43  
44      # Keep the bot on centerline
45      track_line(vals)

Goals:

Cross the midway point of the runway on the centerline.

Reach the end of the runway on the centerline.

Line Following!

You will need to fill in the drive() calls based on which line sensors are detecting.

FULL SPEED AHEAD when only the middle line sensor sees a white line!

No Line?

This happens when the CodeBot is between dashed-lines.

You probably want to just keep driving straight!

Your Main Loop

First thing is to read the line sensors.

What does that second parameter do?

(By the way, the white center line IS reflective!)

This calls a function to track the centerline based on line sensor values.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 116 of 237



Tools Found: Line Sensors, Parameters, Arguments, and Returns, Constants

Solution:

 1  from botcore import *
 2  
 3  LS_THRESH = 2300
 4  # Max speed = 1.0, 50% is 0.5
 5  SPEED_LIMIT = 0.5
 6  
 7  motors.enable(True)
 8  
 9  def drive(left, right):
10      motors.run(LEFT, left * SPEED_LIMIT)
11      motors.run(RIGHT, right * SPEED_LIMIT)
12  
13  def track_line(ls_vals):
14      # Drive based on sensor readings.
15      if ls_vals == (1,0,0,0,0):
16          drive(-20, 50)
17      elif ls_vals == (1,1,0,0,0):
18          drive(0, 60)
19      elif ls_vals == (0,1,0,0,0):
20          drive(40, 80)
21      elif ls_vals == (0,1,1,0,0):
22          drive(80, 100)
23      elif ls_vals == (0,0,1,0,0):
24          drive(100, 100)
25      elif ls_vals == (0,0,0,0,0):
26          drive(100, 100)
27      elif ls_vals == (0,0,1,1,0):
28          drive(100, 80)
29      elif ls_vals == (0,0,0,1,0):
30          drive(80, 40)
31      elif ls_vals == (0,0,0,1,1):
32          drive(60, 0)
33      elif ls_vals == (0,0,0,0,1):
34          drive(50, -20)
35  
36  while True:
37      vals = ls.check(LS_THRESH, True)
38      
39      # Turn on the line sensor leds
40      leds.ls(vals)
41  
42      # Keep the bot on centerline
43      track_line(vals)

Objective 2 - Counting Lines

Dashed line counter!

The airfield manager noticed that your CodeBot ran off the end of the runway...

They asked if you would please stop at the end next time.

But, how will CodeBot recognize the end?

If you knew how many dashed lines there were, you could stop when you sense the last one.

Why don't you try counting the lines!?

Keeping Count

You may have guessed that your program will need a count variable that you will add 1 to every time you detect new dash.

Adding 1 to a variable is called "incrementing". There's also a name for subtracting 1: "decrementing".
So, the tricky part of this Objective is knowing when to increment your count!!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 117 of 237



Watch It!

Once you have the count working properly, be sure to watch closely when your 'bot nears the end of the runway.

Stop the program and check the count.
You will need it for the next Objective!
...and if it goes too far, the other runway markings will mess up the count.

Note: The runway is a little shorter this time, just to make it easier!

CodeTrek:

 1  from botcore import *
 2  
 3  LS_THRESH = 2300
 4  # Max speed = 1.0, 50% is 0.5
 5  SPEED_LIMIT = 0.3

 6  
 7  # State variables
 8  was_line = ?? # TODO: init this variable

 9  count = ??  # TODO: init this variable

10  
11  motors.enable(True)
12  
13  def drive(left, right):
14      """Set both motors from -100% to +100%, with a speed limit."""
15      motors.run(LEFT, left * SPEED_LIMIT)
16      motors.run(RIGHT, right * SPEED_LIMIT)
17  
18  def track_line(ls_vals):
19      """Drive based on sensor readings."""
20      if ls_vals == (1,0,0,0,0):
21          drive(-20, 50)
22      elif ls_vals == (1,1,0,0,0):
23          drive(0, 60)
24      elif ls_vals == (0,1,0,0,0):
25          drive(40, 80)
26      elif ls_vals == (0,1,1,0,0):
27          drive(80, 100)
28      elif ls_vals == (0,0,1,0,0):
29          drive(100, 100)
30      elif ls_vals == (0,0,0,0,0):
31          drive(100, 100)
32      elif ls_vals == (0,0,1,1,0):
33          drive(100, 80)
34      elif ls_vals == (0,0,0,1,0):
35          drive(80, 40)
36      elif ls_vals == (0,0,0,1,1):
37          drive(60, 0)
38      elif ls_vals == (0,0,0,0,1):
39          drive(50, -20)

It is best if you slow down!

This code only monitors the middle line sensor.
Slowing down will help keep the sensor inside the white line.

The was_line variable "remembers" if you were on a line the last time you checked.

Use this to detect the start of a dash!
What should the initial boolean value be?

Well, your 'bot starts before the first line...

The count variable will keep track of runway dashes.

Before your bot starts moving, what should the count be?
(Hint: it's an integer)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 118 of 237



40  
41  # Main program loop
42  while True:
43      vals = ls.check(LS_THRESH, True)
44      
45      # Turn on the line sensor leds
46      leds.ls(vals)
47  
48      # Count the dashed lines
49      is_line = vals[2]
50      if is_line and not was_line:
51          # Beginning of a dash. 
52          count = ??  # TODO: increment the count.  

53          print("count = {}".format(count))  

54  
55          # Set the user LEDs to the count
56          # TODO  

57  
58      # Remember if we were on a line
59      was_line = is_line  

60  
61      # Keep the bot on centerline
62      track_line(vals)
63  

Goals:

Display the "dash count" on the User LEDs (in binary of course).

Reach the middle of the runway with the correct count.

Continue displaying the "dash count" on the user LEDs.

Reach the end of the runway with the correct count.

Tools Found: Variables, CodeBot LEDs, Binary Numbers, int, bool, Assignment

Solution:

 1  from botcore import *
 2  
 3  LS_THRESH = 2300
 4  # Max speed = 1.0, 50% is 0.5
 5  SPEED_LIMIT = 0.3
 6  
 7  was_line = False
 8  count = 0

Remember, increment means add 1 to count.

Consider an augmented assignment statement here.

You can print to the console to help watch your count.

Pass your count value to leds.user().

Your counting is done for this loop.

Better remember the was_line state for next time!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 119 of 237



 9  
10  motors.enable(True)
11  
12  def drive(left, right):
13      motors.run(LEFT, left * SPEED_LIMIT)
14      motors.run(RIGHT, right * SPEED_LIMIT)
15  
16  def track_line(ls_vals):
17      # Drive based on sensor readings.
18      if ls_vals == (1,0,0,0,0):
19          drive(-20, 50)
20      elif ls_vals == (1,1,0,0,0):
21          drive(0, 60)
22      elif ls_vals == (0,1,0,0,0):
23          drive(40, 80)
24      elif ls_vals == (0,1,1,0,0):
25          drive(80, 100)
26      elif ls_vals == (0,0,1,0,0):
27          drive(100, 100)
28      elif ls_vals == (0,0,0,0,0):
29          drive(100, 100)
30      elif ls_vals == (0,0,1,1,0):
31          drive(100, 80)
32      elif ls_vals == (0,0,0,1,0):
33          drive(80, 40)
34      elif ls_vals == (0,0,0,1,1):
35          drive(60, 0)
36      elif ls_vals == (0,0,0,0,1):
37          drive(50, -20)
38  
39  
40  while True:
41      vals = ls.check(LS_THRESH, True)
42      
43      # Turn on the line sensor leds
44      leds.ls(vals)
45  
46      is_line = vals[2]
47      if is_line and not was_line:
48          # Beginning of a dash
49          count += 1
50          print("count = {}".format(count))
51          leds.user(count)
52  
53      was_line = is_line
54  
55      # Keep the bot on centerline
56      track_line(vals)
57  

Objective 3 - Stop at 09

Put it together!

I hope you wrote down the count from the previous objective!

You know how many dashes there are on the runway...

So you have all the knowledge you need to stop CodeBot's motors when it gets to
the end!

CodeTrek:

 1  from botcore import *
 2  
 3  LS_THRESH = 2300
 4  # Max speed = 1.0, 50% is 0.5

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 120 of 237



 5  SPEED_LIMIT = 0.3
 6  TOTAL_LINES = ??  # TODO: Set the total number of lines, counted in last Objective. 

 7  
 8  # Global state variables
 9  was_line = False   # Was a line detected last time?
10  count = 0   # Current count
11  
12  motors.enable(True)
13  
14  def drive(left, right):
15      """Set both motors from -100% to +100%, with a speed limit."""
16      motors.run(LEFT, left * SPEED_LIMIT)
17      motors.run(RIGHT, right * SPEED_LIMIT)
18  
19  def track_line(ls_vals):
20      """Drive based on sensor readings."""
21      if ls_vals == (1,0,0,0,0):
22          drive(-20, 50)
23      elif ls_vals == (1,1,0,0,0):
24          drive(0, 60)
25      elif ls_vals == (0,1,0,0,0):
26          drive(40, 80)
27      elif ls_vals == (0,1,1,0,0):
28          drive(80, 100)
29      elif ls_vals == (0,0,1,0,0):
30          drive(100, 100)
31      elif ls_vals == (0,0,0,0,0):
32          drive(100, 100)
33      elif ls_vals == (0,0,1,1,0):
34          drive(100, 80)
35      elif ls_vals == (0,0,0,1,0):
36          drive(80, 40)
37      elif ls_vals == (0,0,0,1,1):
38          drive(60, 0)
39      elif ls_vals == (0,0,0,0,1):
40          drive(50, -20)
41  
42  # Main program loop
43  while True:
44      vals = ls.check(LS_THRESH, True)
45      
46      # Turn on the line sensor leds
47      leds.ls(vals)
48  
49      # Count the dashed lines
50      is_line = vals[2]
51      if is_line and not was_line:
52          # Beginning of a dash. 
53          count = count + 1  # Increment the count.
54          print("count = {}".format(count))
55          leds.user(count)
56  
57          # Stop the motors when we reach the last dash!
58          if ???:
59              # TODO: Stop the motors.  

60  
61  
62      # Remember if we were on a line
63      was_line = is_line
64  

Set this constant to the total number of dashes you counted.

You'll be checking against this to see if you're at the end.

After you increment count and update the display,

It's time to compare count against the TOTAL_LINES.
And stop the motors immediately if CodeBot is at the end!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 121 of 237



65      # Keep the bot on centerline
66      track_line(vals)

Goals:

Reach mid-field with an accurate count on the User LEDs.

Set motors.enable(False) when your CodeBot senses the last dashed line.

Do not let your CodeBot go past the large 09 at the the end of the runway.

Tools Found: CodeBot LEDs, Constants, Comparison Operators, Motors

Solution:

 1  from botcore import *
 2  
 3  LS_THRESH = 2300
 4  # Max speed = 1.0, 50% is 0.5
 5  SPEED_LIMIT = 0.3
 6  TOTAL_LINES = 83
 7  
 8  line_detected = False
 9  count = 0
10  
11  motors.enable(True)
12  
13  def drive(left, right):
14      motors.run(LEFT, left * SPEED_LIMIT)
15      motors.run(RIGHT, right * SPEED_LIMIT)
16  
17  def track_line(ls_vals):
18      # Drive based on sensor readings.
19      if ls_vals == (1,0,0,0,0):
20          drive(-20, 50)
21      elif ls_vals == (1,1,0,0,0):
22          drive(0, 60)
23      elif ls_vals == (0,1,0,0,0):
24          drive(40, 80)
25      elif ls_vals == (0,1,1,0,0):
26          drive(80, 100)
27      elif ls_vals == (0,0,1,0,0):
28          drive(100, 100)
29      elif ls_vals == (0,0,0,0,0):
30          drive(100, 100)
31      elif ls_vals == (0,0,1,1,0):
32          drive(100, 80)
33      elif ls_vals == (0,0,0,1,0):
34          drive(80, 40)
35      elif ls_vals == (0,0,0,1,1):
36          drive(60, 0)
37      elif ls_vals == (0,0,0,0,1):
38          drive(50, -20)
39  
40  while True:
41      vals = ls.check(LS_THRESH, True)
42      
43      # Turn on the line sensor leds
44      leds.ls(vals)
45  
46      # If the middle line sensor does not see a line
47      if vals[2] == 0:
48          line_detected = False
49  
50      elif not line_detected:
51          line_detected = True
52          count = count + 1
53          print("count = {}".format(count))
54          leds.user(count)
55  

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 122 of 237



56          if count == TOTAL_LINES:
57              motors.enable(False)
58  
59      # Keep the bot on centerline
60      track_line(vals)

Objective 4 - Progress Bar

Need to See Some Progress

The airfield manager complained they can't see CodeBot's position at night.

It's a safety issue!
They want you to turn the User LEDs into a progress bar.

CodeBot Position LEDs
Start of Runway 0b00000000
1 / 8 of Runway 0b00000001
2 / 8 of Runway 0b00000011
3 / 8 of Runway 0b00000111
4 / 8 of Runway 0b00001111
5 / 8 of Runway 0b00011111
5 / 8 of Runway 0b00111111
7 / 8 of Runway 0b01111111
End of Runway 0b11111111

There are pleny of ways to do this

But you need to use the // Python operator.
OH NO...

Take a look at this code:

It returns the number of User LEDs that should be ON for a given count

count = 87
TOTAL_LINES = 173
NUM_USER_LEDS = 8
num_leds_on = (count * NUM_USER_LEDS) // TOTAL_LINES

But what is the weird // symbol?

That is the symbol for Integer Division

Integer Division divides by a number and then rounds down to an integer.

You can learn more here: operators

CodeTrek:

 1  from botcore import *
 2  
 3  LS_THRESH = 2300
 4  # Max speed = 1.0, 50% is 0.5
 5  SPEED_LIMIT = 0.3
 6  TOTAL_LINES = 83
 7  NUM_USER_LEDS = 8
 8  
 9  # Global state variables
10  was_line = False   # Was a line detected last time?
11  count = 0   # Current count
12  
13  motors.enable(True)
14  
15  def show_progress():
16      """Show progress down the runway on the User LEDs."""
17      num_leds_on = (count * NUM_USER_LEDS) // TOTAL_LINES
18      print("num_leds_on=", num_leds_on)  

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 123 of 237



19      progress = [True] * num_leds_on
20      leds.user(progress)  

21  
22  def drive(left, right):
23      """Set both motors from -100% to +100%, with a speed limit."""    
24      motors.run(LEFT, left * SPEED_LIMIT)
25      motors.run(RIGHT, right * SPEED_LIMIT)
26  
27  def track_line(ls_vals):
28      # Drive based on sensor readings.
29      if ls_vals == (1,0,0,0,0):
30          drive(-20, 50)
31      elif ls_vals == (1,1,0,0,0):
32          drive(0, 60)
33      elif ls_vals == (0,1,0,0,0):
34          drive(40, 80)
35      elif ls_vals == (0,1,1,0,0):
36          drive(80, 100)
37      elif ls_vals == (0,0,1,0,0):
38          drive(100, 100)
39      elif ls_vals == (0,0,0,0,0):
40          drive(100, 100)
41      elif ls_vals == (0,0,1,1,0):
42          drive(100, 80)
43      elif ls_vals == (0,0,0,1,0):
44          drive(80, 40)
45      elif ls_vals == (0,0,0,1,1):
46          drive(60, 0)
47      elif ls_vals == (0,0,0,0,1):
48          drive(50, -20)
49  
50  # Main program loop
51  while True:
52      vals = ls.check(LS_THRESH, True)
53      
54      # Turn on the line sensor leds
55      leds.ls(vals)
56  
57      # Count the dashed lines
58      is_line = vals[2]
59      if is_line and not was_line:
60          # Beginning of a dash. 
61          count = count + 1  # Increment the count.
62          print("count = {}".format(count))
63          show_progress()  

64  
65          if count == TOTAL_LINES:
66              motors.enable(False)
67  
68      # Remember if we were on a line
69      was_line = is_line
70  

Progress Bar Function

This is where the action happens!

Use the integer division operator to figure out the num_leds_on.
print the value on the console too, so you can watch it run!

A list of bools!

Did you know the User LEDs can be controlled with a list or tuple?

You can use the multiplication operator  on a list too!
It works like multiplication of an int and a string.

Replace the binary count display with your progress bar function call!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 124 of 237



71      # Keep the bot on centerline
72      track_line(vals)

Goals:

Set User LED "progress bar" as shown in Table.

Travel 2 / 8 down the runway → LEDs 0 and 1 on

Set User LEDs as shown in Table.

Travel 4 / 8 down the runway → LEDs 0 - 3 on

Set User LEDs as shown in Table.

Travel 6 / 8 down the runway → LEDs 0 - 5 on

At the end of runway:

All User LEDs on

Set motors.enable(False)

Use the // operator to calculate a variable called num_leds_on.

Tools Found: CodeBot LEDs, Math Operators, int, Binary Numbers, Print Function, list, bool, tuple, str

Solution:

 1  from botcore import *
 2  
 3  LS_THRESH = 2300
 4  # Max speed = 1.0, 50% is 0.5
 5  SPEED_LIMIT = 0.3
 6  TOTAL_LINES = 83
 7  NUM_USER_LEDS = 8
 8  
 9  # Global state variables
10  was_line = False   # Was a line detected last time?
11  count = 0   # Current count
12  
13  motors.enable(True)
14  
15  def show_progress():
16      """Show progress down the runway on the User LEDs."""
17      num_leds_on = (count * NUM_USER_LEDS) // TOTAL_LINES
18      print("num_leds_on=", num_leds_on)
19      progress = [True] * num_leds_on
20      leds.user(progress)
21  
22  def drive(left, right):
23      """Set both motors from -100% to +100%, with a speed limit."""    
24      motors.run(LEFT, left * SPEED_LIMIT)
25      motors.run(RIGHT, right * SPEED_LIMIT)
26  
27  def track_line(ls_vals):
28      # Drive based on sensor readings.
29      if ls_vals == (1,0,0,0,0):
30          drive(-20, 50)
31      elif ls_vals == (1,1,0,0,0):
32          drive(0, 60)
33      elif ls_vals == (0,1,0,0,0):
34          drive(40, 80)
35      elif ls_vals == (0,1,1,0,0):
36          drive(80, 100)
37      elif ls_vals == (0,0,1,0,0):
38          drive(100, 100)
39      elif ls_vals == (0,0,0,0,0):
40          drive(100, 100)
41      elif ls_vals == (0,0,1,1,0):

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 125 of 237



42          drive(100, 80)
43      elif ls_vals == (0,0,0,1,0):
44          drive(80, 40)
45      elif ls_vals == (0,0,0,1,1):
46          drive(60, 0)
47      elif ls_vals == (0,0,0,0,1):
48          drive(50, -20)
49  
50  # Main program loop
51  while True:
52      vals = ls.check(LS_THRESH, True)
53      
54      # Turn on the line sensor leds
55      leds.ls(vals)
56  
57      # Count the dashed lines
58      is_line = vals[2]
59      if is_line and not was_line:
60          # Beginning of a dash. 
61          count = count + 1  # Increment the count.
62          print("count = {}".format(count))
63          show_progress()
64  
65          if count == TOTAL_LINES:
66              motors.enable(False)
67  
68      # Remember if we were on a line
69      was_line = is_line
70  
71      # Keep the bot on centerline
72      track_line(vals)

Objective 5 - Scared Off

That was a close one!

Did you see that wild animal dart across the runway?

Animal deterrence

The airfield manager asked us to use the CodeBot to deter wild animals from walking on
the runway.

Fortunately I know an expert in animal-robot relations!
They recommended playing a scary sound every 8 dashed-lines for a duration of 3
dashes.

Detecting Every 8th Dash?

What's the best way in Python to detect every 8th occurrence? There are lots of ways, but
for this Objective use the % operator !

The % symbol is called modulo.

Sounds like a great Superhero name... or maybe a villain?
It's nice, really! It gives the remainder from a division.

Seriously, Fractions!?

You may remember learning about the remainder when writing improper fractions as mixed numbers. Python can give you the
quotient and remainder separately with // and % operators:

# In Python:
17 // 5  # 3  (quotient)
17 % 5   # 2  (remainder)

Bear with me here. This math is useful for counting dashes!

Counting Dashes with Modulo

​ = 3R25
17

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 126 of 237



You already have a count variable that increments with each dash.

What if you did count % 5 ?
That would be zero every 5th dash!

Because the remainder is only zero when count is a multiple of 5

Could your Python code detect if count == 0? Of course it could! Maybe now you have a good strategy for detecting every 8th dash
:-)

CodeTrek:

 1  from botcore import *
 2  
 3  LS_THRESH = 2300
 4  # Max speed = 1.0, 50% is 0.5
 5  SPEED_LIMIT = 0.3
 6  TOTAL_LINES = 83
 7  NUM_USER_LEDS = 8
 8  
 9  # Global state variables
10  was_line = False   # Was a line detected last time?
11  count = 0   # Current count
12  
13  motors.enable(True)
14  
15  def scary_sounds():
16      """Play a sound every 8th dash, for 3 dashes duration"""
17      remainder = count % 8
18      if remainder == 0:
19          # TODO: play speaker tone  

20      elif remainder == 3:
21          # TODO: turn speaker off  

22  
23  def show_progress():
24      """Show progress down the runway on the User LEDs."""
25      num_leds_on = (count * NUM_USER_LEDS) // TOTAL_LINES
26      print("num_leds_on=", num_leds_on)
27      progress = [True] * num_leds_on
28      leds.user(progress)
29  
30  def drive(left, right):
31      """Set both motors from -100% to +100%, with a speed limit."""    
32      motors.run(LEFT, left * SPEED_LIMIT)
33      motors.run(RIGHT, right * SPEED_LIMIT)
34  
35  def track_line(ls_vals):
36      # Drive based on sensor readings.
37      if ls_vals == (1,0,0,0,0):
38          drive(-20, 50)
39      elif ls_vals == (1,1,0,0,0):
40          drive(0, 60)
41      elif ls_vals == (0,1,0,0,0):
42          drive(40, 80)
43      elif ls_vals == (0,1,1,0,0):
44          drive(80, 100)
45      elif ls_vals == (0,0,1,0,0):
46          drive(100, 100)

Your Scary Sounds Function

Here's where you decide, based on count, if it's time to start or stop playing a sound.

Start playing every 8th dash.
Check the speaker tool for help with that.

Notice that remainder repeatedly cycles from 0 to 7 as count increases.

Check it out in the debugger to confirm that!
You are turning the speaker ON at 0. It plays for (0, 1, 2) - that's 3 dashes.
So, turn it OFF at 3.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 127 of 237



47      elif ls_vals == (0,0,0,0,0):
48          drive(100, 100)
49      elif ls_vals == (0,0,1,1,0):
50          drive(100, 80)
51      elif ls_vals == (0,0,0,1,0):
52          drive(80, 40)
53      elif ls_vals == (0,0,0,1,1):
54          drive(60, 0)
55      elif ls_vals == (0,0,0,0,1):
56          drive(50, -20)
57  
58  # Main program loop
59  while True:
60      vals = ls.check(LS_THRESH, True)
61      
62      # Turn on the line sensor leds
63      leds.ls(vals)
64  
65      # Count the dashed lines
66      is_line = vals[2]
67      if is_line and not was_line:
68          # Beginning of a dash. 
69          count = count + 1  # Increment the count.
70          print("count = {}".format(count))
71          show_progress()
72          scary_sounds()  

73  
74          if count == TOTAL_LINES:
75              motors.enable(False)
76  
77      # Remember if we were on a line
78      was_line = is_line
79  
80      # Keep the bot on centerline
81      track_line(vals)

Goals:

Make your first scary sound at the 8th line

The sound should stay on for three lines and then stop
Line 7 = OFF, Line 8 = ON, Line 9 = ON, Line 10 = ON, Line 11 = OFF

Make a scary sound every 8th line starting at the 8th line.

This will surely chase animals off the runway!

At the last line:

Set all User LEDs on

Set motors.enable(False)

Turn the speaker off

Use the % operator to calculate a variable called remainder.

Tools Found: Math Operators, Speaker

Solution:

 1  from botcore import *
 2  

One more thing to check each time you update count

This doesn't mean you play a sound every count...
You're just giving this function a chance to decide if it's time to play or stop a sound.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 128 of 237



 3  LS_THRESH = 2300
 4  # Max speed = 1.0, 50% is 0.5
 5  SPEED_LIMIT = 0.3
 6  TOTAL_LINES = 83
 7  NUM_USER_LEDS = 8
 8  
 9  # Global state variables
10  was_line = False   # Was a line detected last time?
11  count = 0   # Current count
12  
13  motors.enable(True)
14  
15  def scary_sounds():
16      remainder = count % 8
17      if remainder == 0:
18          spkr.pitch(800)
19      elif remainder == 3:
20          spkr.off()
21  
22  def show_progress():
23      """Show progress down the runway on the User LEDs."""
24      num_leds_on = (count * NUM_USER_LEDS) // TOTAL_LINES
25      print("num_leds_on=", num_leds_on)
26      progress = [True] * num_leds_on
27      leds.user(progress)
28  
29  def drive(left, right):
30      """Set both motors from -100% to +100%, with a speed limit."""    
31      motors.run(LEFT, left * SPEED_LIMIT)
32      motors.run(RIGHT, right * SPEED_LIMIT)
33  
34  def track_line(ls_vals):
35      # Drive based on sensor readings.
36      if ls_vals == (1,0,0,0,0):
37          drive(-20, 50)
38      elif ls_vals == (1,1,0,0,0):
39          drive(0, 60)
40      elif ls_vals == (0,1,0,0,0):
41          drive(40, 80)
42      elif ls_vals == (0,1,1,0,0):
43          drive(80, 100)
44      elif ls_vals == (0,0,1,0,0):
45          drive(100, 100)
46      elif ls_vals == (0,0,0,0,0):
47          drive(100, 100)
48      elif ls_vals == (0,0,1,1,0):
49          drive(100, 80)
50      elif ls_vals == (0,0,0,1,0):
51          drive(80, 40)
52      elif ls_vals == (0,0,0,1,1):
53          drive(60, 0)
54      elif ls_vals == (0,0,0,0,1):
55          drive(50, -20)
56  
57  # Main program loop
58  while True:
59      vals = ls.check(LS_THRESH, True)
60      
61      # Turn on the line sensor leds
62      leds.ls(vals)
63  
64      # Count the dashed lines
65      is_line = vals[2]
66      if is_line and not was_line:
67          # Beginning of a dash. 
68          count = count + 1  # Increment the count.
69          print("count = {}".format(count))
70          show_progress()
71          scary_sounds()
72  
73          if count == TOTAL_LINES:
74              motors.enable(False)
75  
76      # Remember if we were on a line
77      was_line = is_line

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 129 of 237



78  
79      # Keep the bot on centerline
80      track_line(vals)

Objective 6 - Pilot Math

One last task

The airfield manager has placed markers on the right side of the runway.

A pilot uses them to tell how close they are to the end.
Due to the nature of aircraft speed, the distance between the markers increases exponentially.

Check it out in the 3D view. There are 7 red markers numbered 1-7, positioned at dashes based on powers of 2:

Marker 1 2 3 4 5 6 7
Dash = 2 4 8 16 32 64 128

The airfield manager wants to make sure the markers are placed the correct distances apart. They've asked if CodeBot can measure
and signal with the Prox LEDs when it passes the marker positions.

Starting at Marker number 2 (dash=4), turn the Prox LEDs ON at each red marker.
Turn them OFF 3 dashes past each marker position.

Detecting the Red Markers

You are already tracking the count of dashes. Now you need to track the next_marker too!

You will know you've reached a marker when the dash count = .
In Python that would look something like:

if count == 2**next_marker:
    leds.prox(0b11)  # Turn on both prox leds

That ** symbol is one of Python's math operators, known as exponentiation or the power operator.

The Long Run!

By the way, you will be working with the full-length runway this time!

That's TOTAL_LINES = 173 if you're counting!

CodeTrek:

  1  from botcore import *
  2  
  3  LS_THRESH = 2300
  4  # Max speed = 1.0, 50% is 0.5
  5  SPEED_LIMIT = 0.3
  6  TOTAL_LINES = 173  

  7  NUM_USER_LEDS = 8
  8  
  9  # Global state variables
 10  was_line = False   # Was a line detected last time?
 11  count = 0   # Current count
 12  next_marker = 2  

2marker

2next_marker

There's a longer runway this time!

Be sure to update the total number of dashes.
Otherwise your 'bot will stop short!

A global variable to keep track of the next marker you're looking for.

Start with Marker 2 as instructed.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 130 of 237



 13  
 14  motors.enable(True)
 15  
 16  def check_markers():
 17      """Turn on the Prox LEDs when a Marker is reached."""
 18      global next_marker
 19  
 20      # Markers are positioned at dashes with powers of 2 down the runway
 21      marker_dash = 2**next_marker
 22      print("next marker dash = ", marker_dash)  

 23  
 24      # Check to see if our count has reached the next marker
 25      if count == marker_dash:
 26          leds.prox(3)  # Both LEDs on  

 27      elif count == marker_dash + 3:
 28          leds.prox(0)  # LEDs off
 29          next_marker += 1  # Ready for next marker number  

 30  
 31  def scary_sounds():
 32      remainder = count % 8
 33      if remainder == 0:
 34          spkr.pitch(800)
 35      elif remainder == 3:
 36          spkr.off()
 37  
 38  def show_progress():
 39      """Show progress down the runway on the User LEDs."""
 40      num_leds_on = (count * NUM_USER_LEDS) // TOTAL_LINES
 41      print("num_leds_on=", num_leds_on)
 42      progress = [True] * num_leds_on
 43      leds.user(progress)
 44  
 45  def drive(left, right):
 46      """Set both motors from -100% to +100%, with a speed limit."""    
 47      motors.run(LEFT, left * SPEED_LIMIT)
 48      motors.run(RIGHT, right * SPEED_LIMIT)
 49  
 50  def track_line(ls_vals):
 51      # Drive based on sensor readings.
 52      if ls_vals == (1,0,0,0,0):

A function to Check for Markers

Use the exponentiation operator to raise 2 to a power.

Which marker do you seek?

marker_dash = 2next_marker

Reached a Marker!

Turn on both Prox LEDs.

You can turn the Prox LEDs on with the function leds.prox(b).

Parameter b is a binary value!

b = 0 # Turns off both prox lights!
b = 1 # Turns the left prox light on!
b = 2 # Turns the right prox light on!
b = 3 # Turns both prox lights on!

leds.prox(b)

The count is 3 dashes beyond the Marker.

Time to turn the LEDs off!
Also, begin looking for the next marker in sequence.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 131 of 237



 53          drive(-20, 50)
 54      elif ls_vals == (1,1,0,0,0):
 55          drive(0, 60)
 56      elif ls_vals == (0,1,0,0,0):
 57          drive(40, 80)
 58      elif ls_vals == (0,1,1,0,0):
 59          drive(80, 100)
 60      elif ls_vals == (0,0,1,0,0):
 61          drive(100, 100)
 62      elif ls_vals == (0,0,0,0,0):
 63          drive(100, 100)
 64      elif ls_vals == (0,0,1,1,0):
 65          drive(100, 80)
 66      elif ls_vals == (0,0,0,1,0):
 67          drive(80, 40)
 68      elif ls_vals == (0,0,0,1,1):
 69          drive(60, 0)
 70      elif ls_vals == (0,0,0,0,1):
 71          drive(50, -20)
 72  
 73  # Main program loop
 74  while True:
 75      vals = ls.check(LS_THRESH, True)
 76      
 77      # Turn on the line sensor leds
 78      leds.ls(vals)
 79  
 80      # Count the dashed lines
 81      is_line = vals[2]
 82      if is_line and not was_line:
 83          # Beginning of a dash. 
 84          count = count + 1  # Increment the count.
 85          print("count = {}".format(count))
 86          show_progress()
 87          scary_sounds()
 88          check_markers()  

 89  
 90          if count == TOTAL_LINES:
 91              motors.enable(False)
 92  
 93      # Remember if we were on a line
 94      was_line = is_line
 95  
 96      # Keep the bot on centerline
 97      track_line(vals)
 98  

Goals:

Make a sound every 8th line starting at the 8th line.

The sound should stay on for 3 lines.

Turn the prox leds on at lines that are powers of 2 starting at Marker 2 (4th dash).

Set leds.prox(0) 3 lines later

At the last line:

All user LEDs on and all prox LEDs off

Set motors.enable(False)

Turn the speaker off

Use the ** operator to calculate a power of 2.

When a Dash begins, the action happens!

One more function call for your dash-detection-duties.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 132 of 237



Tools Found: Math Operators, Locals and Globals, Functions

Solution:

 1  from botcore import *
 2  
 3  LS_THRESH = 2300
 4  # Max speed = 1.0, 50% is 0.5
 5  SPEED_LIMIT = 0.3
 6  TOTAL_LINES = 173
 7  NUM_USER_LEDS = 8
 8  
 9  # Global state variables
10  was_line = False   # Was a line detected last time?
11  count = 0   # Current count
12  next_marker = 2
13  
14  motors.enable(True)
15  
16  def check_markers():
17      global next_marker
18      marker_dash = 2**next_marker
19      print("next marker dash = ", marker_dash)
20      if count == marker_dash:
21          leds.prox(3)
22      elif count == marker_dash + 3:
23          leds.prox(0)
24          next_marker += 1
25  
26  def scary_sounds():
27      remainder = count % 8
28      if remainder == 0:
29          spkr.pitch(800)
30      elif remainder == 3:
31          spkr.off()
32  
33  def show_progress():
34      """Show progress down the runway on the User LEDs."""
35      num_leds_on = (count * NUM_USER_LEDS) // TOTAL_LINES
36      print("num_leds_on=", num_leds_on)
37      progress = [True] * num_leds_on
38      leds.user(progress)
39  
40  def drive(left, right):
41      """Set both motors from -100% to +100%, with a speed limit."""    
42      motors.run(LEFT, left * SPEED_LIMIT)
43      motors.run(RIGHT, right * SPEED_LIMIT)
44  
45  def track_line(ls_vals):
46      # Drive based on sensor readings.
47      if ls_vals == (1,0,0,0,0):
48          drive(-20, 50)
49      elif ls_vals == (1,1,0,0,0):
50          drive(0, 60)
51      elif ls_vals == (0,1,0,0,0):
52          drive(40, 80)
53      elif ls_vals == (0,1,1,0,0):
54          drive(80, 100)
55      elif ls_vals == (0,0,1,0,0):
56          drive(100, 100)
57      elif ls_vals == (0,0,0,0,0):
58          drive(100, 100)
59      elif ls_vals == (0,0,1,1,0):
60          drive(100, 80)
61      elif ls_vals == (0,0,0,1,0):
62          drive(80, 40)
63      elif ls_vals == (0,0,0,1,1):
64          drive(60, 0)
65      elif ls_vals == (0,0,0,0,1):
66          drive(50, -20)
67  
68  # Main program loop

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 133 of 237



69  while True:
70      vals = ls.check(LS_THRESH, True)
71      
72      # Turn on the line sensor leds
73      leds.ls(vals)
74  
75      # Count the dashed lines
76      is_line = vals[2]
77      if is_line and not was_line:
78          # Beginning of a dash. 
79          count = count + 1  # Increment the count.
80          print("count = {}".format(count))
81          show_progress()
82          scary_sounds()
83          check_markers()
84  
85          if count == TOTAL_LINES:
86              motors.enable(False)
87  
88      # Remember if we were on a line
89      was_line = is_line
90  
91      # Keep the bot on centerline
92      track_line(vals)

Quiz 1 - Fly with Python

Question 1: What's 1 // 2 ?

done 0

close 0.5

close 1

Question 2: What's 5 % 8 ?

done 5

close 0

close 3

Question 3: What's 4 % 3 ?

done 1

close 0

close 7

Question 4: What's 10 ** 2 ?

done 100

close 1024

close 20

Mission 12 - King of the Hill
Harness the CodeBot's accelerometer to climb to the top of a mountain!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 134 of 237



Objective 1 - Looking Up

Introducing the Accelerometer!
Your 'bot can detect impacts with other objects, changes in motion, and orientation.

All thanks to the CodeBot Accelerometer, the tiny chip shown at right!
CodeBot's accelerometer measures the force of acceleration in three-directions:
X, Y, and Z.

Pulling some g's!

In the picture at right, if the circuit board is positioned flat (horizontal) and motionless
on Earth, then it will have 1g pulling down in the -Z direction.

In physics the letter g means Earth's gravitational acceleration (approximately
9.8m/s2).
So in this motionless case you would expect the accelerometer to measure:

X = 0 g (pointed toward the horizon, no significant gravitational
acceleration)
Y = 0 g (ditto, horizontal)
Z = -1 g (Earth's gravity pulling straight down, opposite to the +Z direction)

The CodeBot Accelerometer is a MEMS accelerometer.

MEMS stands for "Micro-Electro-Mechanical System".
Inside this little chip are tiny silicon structures that really move!
...and of course, electronic components to sense them.

The botcore library exposes the accel object, which provides access to the chip's many capabilities.

Some highlights of basic orientation functions:

read()  # Read current axis values.
        # Returns a tuple (x, y, z) of ints.
        # 16-bit signed int range: -32767 to +32768
        # Default full-scale acceleration = ±2g

dump_axes()  # Print 3-axis values to debug console.

Now That You're Oriented

What value do you expect accel.read() to return for the "horizontal" case above?

Seems like (0.0, 0.0, -1.0) would make sense, right?
But wait! According to the API note, the read() function returns a tuple of integer, not float values.
The values are 16-bit signed ints, so 65,535 (216) possibilities.

The max positive value of +2g would be +32,768.
That means our -1g would be (-32767 / 2) = -16,383.

Create a new file!

Use the File → New File menu to create a new file called "looking_up.py"

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Enable the motors
 5  motors.enable(True)
 6  
 7  # Set both motors to 40%
 8  motors.run(LEFT, 40)
 9  motors.run(RIGHT, 40)
10  
11  # Loop forever
12  while True:
13      # Read the accelerometer X, Y and Z values
14      x, y, z = accel.read() 

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 135 of 237



15  
16      # Print raw values
17      print(x, y, z, sep=???) # TODO: fix separator string!  

18  
19      # Print values as a list
20      print([x, y, z]) 

21  
22      # Print values as a tuple
23      print((x, y, z)) 

24  
25      # Print values in a formatted string
26      accel.dump_axes() 

27  
28      sleep(0.1) 

29      
30      print('----------------')
31  

Goals:

Write an infinite loop that: Reads the values of the Accelerometer with accel.read()

Print the x, y, z values of the Accelerometer three ways in the following order:

comma-separated integers ex: 1, 2, 3

a list ex: [1, 2, 3]

a tuple ex: (1, 2, 3)

Print the Accelerometer values with accel.dump_axes()

accel.read() returns 3 values in a tuple. 

Assigning x, y, z unpacks the tuple and assigns each of the three values to individual variables all in just one line of code!

print your variables as 3 integers, separated by commas.

What should sep=??? really be?

Create a list by using square brackets 

The print() statement will convert this to a properly-formatted string.

Create a tuple by using parentheses 

The print() statement will convert this to a properly-formatted string.

Look odd to see double-nested parentheses? I agree!

Check out what's happening though. The outer parentheses are required for arguments to the print() function.
The inner parenthesis are making a tuple!

The accelerometer function dump_axes() prints a string in the console window formatted like this X=NN, Y=NN, Z=NN.

The sleep(0.1) slows down the output to the console window, making it easier to read.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 136 of 237



Tools Found: Accelerometer, import, tuple, int, float, list, Assignment, Print Function, Keyword and Positional Arguments

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Enable the motors
 5  motors.enable(True)
 6  
 7  # Set both motors to 40%
 8  motors.run(LEFT, 40)
 9  motors.run(RIGHT, 40)
10  
11  # Loop forever
12  while True:
13      # Read the accelerometer X, Y and Z values
14      x, y, z = accel.read() #@1
15  
16      # Print raw values
17      print(x, y, z, sep=',') #@2
18  
19      # Print values as a list
20      print([x, y, z]) #@3
21  
22      # Print values as a tuple
23      print((x, y, z)) #@4
24  
25      # Print values in a formatted string
26      accel.dump_axes() #@5
27  
28      sleep(0.1) #@6
29      
30      print('----------------')
31  

Quiz 1 - Get Down With Gravity

Question 1: What would the 'Z' value of the accelerometer read if CodeBot's circuit board was sitting horizontally flat?

That's 1g of gravity pulling straight down!

done -16383

close 32767

close 1

close +16383

Question 2: How would you print the values of -679, 4093, -15850 in a tuple?

done print((-679, 4093, -15850))

close print(-679, 4093, -15850)

close print([-679, 4093, -15850])

Objective 2 - Level With Me

Get your climbing gear in order...

Before you climb a mountain, be sure you have all the tools you need to make it to the top!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 137 of 237



a

y 

z
16384

While you're on level ground, convert CodeBot's Accelerometer data into something you can work with.

The raw numbers it gives by default tell you something about gravity, but for climbing you need to figure out the angles!
Is your 'bot on level ground or is it on a steep incline?

Get ready to convert the accelerometer data into some angles! Here are the principal axes used to navigate ships, aircraft, and
robots:

Pitch, Roll, and Yaw

What's Your Angle?

Now...the geometry of CodeBot's chassis makes this a little more complex. Have you noticed that the CodeBot's nose points
downward?

This design, while incredibly sporty and fun looking, is going to cost you a bit in added calculations.
Before you can determine the true angles of the plywood mountain you plan to conquer, you're going to have to compensate for
that oh-so-cool, signature CodeBot slant!

Use the Accelerometer to find out exactly how many degrees the CodeBot's nose is pointing down while your 'bot is on a flat
surface.

As you can see from the picture above, the accelerometer's Y-axis will be tilted down a little in the Z direction.
Gravity is pulling in the Z-axis, so the accelerometer tells you the Z component of its internal axes.

Gravity Vector

Check out this triangle! The yellow arrow is CodeBot's slant, shown as a vector.

Whent it's horizontal there's no Z component, so your accelerometer-Y reads 0.
If it's pointed straight down (a = 90°) it's all Z, so you'd read 16384.
At an angle 'a' it makes a triangle with both Y and Z components.

Python's math module provides functions to calculate angles and sides of triangles.

Wait... how did they know we'd need to calculate gravity vectors? What dark code is this?
Relax, it's just trigonometry baby!

CodeTrek:

 1  from botcore import *
 2  import math  

 3  
 4  x,y,z = accel.read()
 5  
 6  # Print the raw value of Y

sin(a) = ​ ⟹ ​

16384
z

a = arcsin( ​)
16384

z

Import the math module so that you can use the math arcsine asin() function below.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 138 of 237



 7  print("y = {}".format(y))  

 8  
 9  # Calculate the pitch angle in radians
10  pitch = math.asin(y / 16384)  

11  
12  print("pitch = {} radians".format(pitch))
13  
14  # Convert the pitch angle from radians to degrees
15  pitch = pitch * 180 / math.pi  

16  
17  print("pitch = {} degrees".format(pitch))
18  

Goals:

Print the raw Y-axis value to the console: y = XXX

Use the format() method to format your string for printing (see string formatting)

Calculate the pitch angle using the math module function asin()

This is the  trig function, which gives the angle in radians.

Format and print the value: pitch = XXX radians

Convert the pitch angle to degrees: 

Format and print the value: pitch = XXX degrees

Tools Found: Accelerometer, Math Module, String Formatting

Solution:

 1  from botcore import *
 2  import math
 3  
 4  x,y,z = accel.read()
 5  
 6  # Print the raw value of Y
 7  print("y = {}".format(y))
 8  
 9  # Calculate the pitch angle in radians
10  pitch = math.asin(y / 16384)
11  
12  print("pitch = {} radians".format(pitch))
13  

Print the "raw" value.

The accelerometer tells you what component of its Y-axis is pointed down.

Calculate the pitch angle.

Note the math functions work in radians.

The "magic number" 16384 is what your accelerometer reads for 1g or one earth's gravitational acceleration,
so it's the hypotenuse of the vector triangle.

Convert radians to degrees:

deg = rad ⋅ ​

π
180°

arcsin()

deg = rad ⋅ ​π
180°

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 139 of 237



14  # Convert the pitch angle from radians to degrees
15  pitch = pitch * 180 / math.pi
16  
17  print("pitch = {} degrees".format(pitch))
18  

Objective 3 - Off-Roading

Pitch Perfect
Now that you've measured your "level" pitch angle, it's time to put that information to use and start climbing some slopes! Gotta get
your 'bot moving up the mountain to check those angles.

Hmm, if only you had a mountain to climb...

You DO have a mountain to climb!

So here goes. It's time to climb this mountain! To start with, you are going
to drive this thing manually!

Did you know that in the simulator you can use the 0 and 1 keys on
your keyboard to activate the Codebot's BTN-0 and BTN-1

buttons?
With this knowledge, all you need to do is check the state of those

buttons in an infinite while loop to release the power to drive this
'bot like the wind, simply using your keyboard.

One last thing...

In previous objectives, you may have noticed that your 'bot is POWERFUL!

If you start out with full power, the nose pops a wheelie.
Kind of cool, right? But not for climbing mountains.

Don't flip out here.

To keep things more grounded, you need to accelerate more slowly.

Write some code to accelerate and decelerate CodeBot more gradually, as you control it with the buttons.

Alright, Drive On!

CodeTrek:

 1  from botcore import *
 2  import math
 3  from time import sleep_ms
 4  
 5  # Constants
 6  SPEED_LIMIT = 70
 7  CODEBOT_SLANT = 20  # Measured earlier  

 8  ONE_G = 16384  

 9  
10  # Global variables for motor power
11  left_power = 0
12  right_power = 0
13  

The constant value of CodeBot's pitch.

This is the value you measured in the previous Objective!
You'll need to subtract this from the accelerometer reading to "level it out".

Another constant, 16384 is equal to 1g of gravitational acceleration.

This is a property of the accelerometer you learned in the first Objective.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 140 of 237



14  # Enable motors
15  motors.enable(True)
16  
17  def drive_bot():
18      """Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)"""
19      # TODO: Do we need code here to declare some globals?  

20  
21      # Accelerate slowly if button is pressed
22      if buttons.is_pressed(LEFT):
23          if left_power < SPEED_LIMIT:
24              left_power = left_power + 1
25      elif left_power > 1:
26          # Decelerate if button not pressed
27          left_power = left_power - 2  

28  
29      # Accelerate slowly if button is pressed
30      if buttons.is_pressed(RIGHT):
31          if right_power < SPEED_LIMIT:
32              right_power = right_power + 1
33      elif right_power > 1:
34          # Decelerate if button not pressed
35          right_power = right_power - 2  

36  
37      # Apply the power!
38      motors.run(LEFT, left_power)
39      motors.run(RIGHT, right_power)  

40  
41  def get_pitch():
42      """Get the current pitch angle of the platform in degrees"""
43      # Read the raw accelerometer data
44      x, y, z = accel.read()
45  
46      # Calculate pitch and convert angle to degrees
47      pitch = math.asin(y / ONE_G)
48      pitch = pitch * 180 / math.pi  

49  
50      # Subtract CodeBot slant
51      pitch = pitch - CODEBOT_SLANT  

A function to drive the 'bot using the buttons

It gradually increaseds or decreases the global motor power variables above.

There may be a bug here!

Check your buttons!

If the button is pressed, increase power!
If not, decrease. But don't let power go below zero. (no reverse!)

AND enforce a SPEED_LIMIT so it doesn't get too crazy in here.

Same deal for the RIGHT motor!

Finally, send those calculated power levels to the motors!

Fancy Maths

These are the pitch calculations you worked out in the last Objective.

Level it out!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 141 of 237



52  
53      # Make "looking up" a positive angle
54      pitch = -pitch  

55      # Round to the nearest integer
56      # TODO: ...what was that "round" function called?  
#@10
57  
58      return pitch
59  
60  # Main Loop
61  while True:
62      # Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)
63      drive_bot()
64  
65      # Get the current pitch angle
66      pitch = get_pitch()
67  
68      # Print the pitch angle to the console window
69      print("Pitch: ", pitch)    
70  
71      # Slow down the display for better readability
72      sleep_ms(50)  
#@11
73  

Hints:

In order for the simulation to capture the 0 and 1 keys on your keyboard, make sure you focus the sim by clicking in the 3D
View after you run your code!

See the built-ins for a function to round() your pitch.

You are going to need to declare those global variables inside the drive_bot() function.

Goals:

Print the CodeBot's pitch in a while loop in the format Pitch: XX.

Pitch value must be rounded to the nearest degree.

Nose pointing up should be positive.

Use BTN0 and BTN1 to drive CodeBot up the mountain!

I want to see that pitch angle INCREASE as your nose points to the sky.

Show me at least 30° of pitch please!

Tools Found: Buttons, Loops, Constants, Accelerometer, Functions, Locals and Globals, Motors, Built-In Functions

Solution:

 1  from botcore import *
 2  import math
 3  from time import sleep_ms
 4  
 5  # Constants
 6  SPEED_LIMIT = 70

This should make the pitch zero when you're on level ground.

Defy Gravity!

The accelerometer gives positive values in the direction of acceleration.

And gravity is accelerating CodeBot toward the center of the Earth!
But humans prefer to consider UP as positive... so flip the sign!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 142 of 237



 7  CODEBOT_SLANT = 20  # Measured earlier
 8  ONE_G = 16384
 9  
10  # Global variables
11  left_power = 0
12  right_power = 0
13  
14  # Enable motors
15  motors.enable(True)
16  
17  def drive_bot():
18      """Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)"""
19      global left_power, right_power
20  
21      # Accelerate slowly if button is pressed
22      if buttons.is_pressed(LEFT):
23          if left_power < SPEED_LIMIT:
24              left_power = left_power + 1
25      elif left_power > 1:
26          # Decelerate if button not pressed
27          left_power = left_power - 2
28  
29      # Accelerate slowly if button is pressed
30      if buttons.is_pressed(RIGHT):
31          if right_power < SPEED_LIMIT:
32              right_power = right_power + 1
33      elif right_power > 1:
34          # Decelerate if button not pressed
35          right_power = right_power - 2
36  
37      # Apply the power!
38      motors.run(LEFT, left_power)
39      motors.run(RIGHT, right_power)
40  
41  def get_pitch():
42      """Get the current pitch angle of the platform in degrees"""
43      # Read the raw accelerometer data
44      x, y, z = accel.read()
45  
46      # Calculate pitch and convert angle to degrees
47      pitch = math.asin(y / ONE_G)
48      pitch = pitch * 180 / math.pi
49  
50      # Subtract CodeBot slant
51      pitch = pitch - CODEBOT_SLANT
52  
53      # Make "looking up" a positive angle
54      pitch = -pitch
55  
56      # Round to the nearest integer
57      pitch = round(pitch)
58  
59      return pitch
60  
61  while True:
62      # Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)
63      drive_bot()
64  
65      # Get the current pitch angle
66      pitch = get_pitch()
67  
68      # Print the pitch angle to the console window
69      print("Pitch: ", pitch)    
70  
71      # Slow down the display for better readability
72      sleep_ms(50)
73  

Objective 4 - Prettier Pitch

WOW, you're fast!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 143 of 237



I hope you've enjoyed getting behind the wheel of CodeBot!

I don't know about you, but I think the console output was a little weak on presentation.

Make some improvements by displaying your pitch data in a more graphical and fun manner...
It's time to take this display to the next level!

Packin' a Powerful Pitch

First define the range of pitch possibilities for your roamin' robot!

The highest your CodeBot's nose can go is straight up, which is 90°.
The lowest it can go is straight down, which is -90°.

Using this pitch range and string manipulation, you can create a bar graph display to represent your current pitch relative to 0°.
Here are two examples:

'[-90°        == -20°           +90°]'

'[-90°            80° ========  +90°]'

Format Specifiers

Check out the Format Specifiers section of the string formatting toolbox entry.

To create the display above, you'll need to align the pitch value. You can put an "alignment" character just after the colon in the
format specifier, and before the width.

Ex:

pitch = 45
"{:^20}".format(pitch)  # Align center: '         45         '
"{:>20}".format(pitch)  # Align right:  '                  45'
"{:<20}".format(pitch)  # Align left    '45                  '

CodeTrek:

 1  from botcore import *
 2  import math
 3  from time import sleep_ms
 4  
 5  # Constants
 6  SPEED_LIMIT = 70
 7  CODEBOT_SLANT = 20
 8  ONE_G = 16384
 9  
10  # Global variables for motor power
11  left_power = 0
12  right_power = 0
13  
14  # Enable motors
15  motors.enable(True)
16  
17  def drive_bot():
18      """Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)"""
19      global left_power, right_power
20  
21      # Accelerate slowly if button is pressed
22      if buttons.is_pressed(LEFT):
23          if left_power < SPEED_LIMIT:
24              left_power = left_power + 1
25      elif left_power > 1:
26          # Decelerate if button not pressed
27          left_power = left_power - 2
28  
29      # Accelerate slowly if button is pressed
30      if buttons.is_pressed(RIGHT):
31          if right_power < SPEED_LIMIT:
32              right_power = right_power + 1
33      elif right_power > 1:
34          # Decelerate if button not pressed
35          right_power = right_power - 2

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 144 of 237



36  
37      # Apply the power!
38      motors.run(LEFT, left_power)
39      motors.run(RIGHT, right_power)
40  
41  def get_pitch():
42      """Get the current pitch angle of the platform in degrees"""
43      # Read the raw accelerometer data
44      x, y, z = accel.read()
45  
46      # Calculate pitch and convert angle to degrees
47      pitch = math.asin(y / ONE_G)
48      pitch = pitch * 180 / math.pi
49  
50      # Subtract CodeBot slant
51      pitch = pitch - CODEBOT_SLANT
52  
53      # Make "looking up" a positive angle
54      pitch = -pitch
55  
56      # Round to the nearest integer
57      pitch = round(pitch)
58  
59      return pitch
60  
61  def dashboard(pitch):
62      # Make a bar graph string of up to 30 segments
63      num_bars = abs(pitch) / 3  

64  
65      # Use '=' character for the bar graph segments
66      bar_graph = '=' * num_bars  # TODO: what if num_bars is not an integer?  

67  
68      # Negative on the left, positive on the right!
69      bars_left = bars_right = ''  

70      if pitch < 0:
71          bars_left = bar_graph
72      else:
73          bars_right = bar_graph  

74  
75      # Use "align" character for LEFT and RIGHT alignment of bars
76      dash = "[-90 {:>30} {:+3} {:<30} +90]".format(bars_left, pitch, bars_right)  

Your bar graph will be made of segments.

Use the built-in abs() function here to calculate the number of segments to display.
Dividing by 2 gives you one segment for every 2° of pitch.

Use string multiplication

This creates a new string by repeating '=' a number of times.
Make sure it's a round number though!

(You may have to fix a bug here!)

Cascaded assignment statements. Oh My!

Sets both bars_left and bars_right equal to an empty string.

Your bar graph will be on the left or right depending on whether pitch is positive or negative.

Fancy Formatting
This is where you use the left and right  align characters to format the bars.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 145 of 237



77  
78      print(dash)
79  
80  while True:
81      # Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)
82      drive_bot()
83  
84      # Get the current pitch angle
85      pitch = get_pitch()
86  
87      # Display a beautifully formatted pitch dashboard
88      dashboard(pitch)  

89  
90      # Slow down the display for better readability
91      sleep_ms(50)
92  

Hint:

Too Wide for Your Console?
If your console display doesn't look nice, you may need to widen it.

Text printed to the console will "wrap around" if the line length exceeds the available width.

If this is happening, try resizing the console panel by dragging the window border.

OR you can reduce the width of your dashboard to fewer than 30 segments on each side.

Goals:

Use Format Specifiers to create a bar graph display for your pitch.

Drive around using the buttons until you see:

At least 5-segments of negative bar graph.

Drive around using the buttons until you see:

At least 5-segments of positive bar graph.

Tools Found: Print Function, str, undefined, String Formatting, Buttons, Built-In Functions, Assignment

Solution:

 1  from botcore import *
 2  import math
 3  from time import sleep_ms
 4  
 5  # Constants
 6  SPEED_LIMIT = 70
 7  CODEBOT_SLANT = 20  # Measured earlier #@1
 8  ONE_G = 16384
 9  
10  # Global variables
11  left_power = 0
12  right_power = 0
13  
14  # Enable motors
15  motors.enable(True)
16  
17  def drive_bot():
18      """Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)"""
19      global left_power, right_power

Finally, display your one-line pitch dashboard!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 146 of 237



20  
21      # Accelerate slowly if button is pressed
22      if buttons.is_pressed(LEFT):
23          if left_power < SPEED_LIMIT:
24              left_power = left_power + 1
25      elif left_power > 1:
26          # Decelerate if button not pressed
27          left_power = left_power - 2
28  
29      # Accelerate slowly if button is pressed
30      if buttons.is_pressed(RIGHT):
31          if right_power < SPEED_LIMIT:
32              right_power = right_power + 1
33      elif right_power > 1:
34          # Decelerate if button not pressed
35          right_power = right_power - 2
36  
37      # Apply the power!
38      motors.run(LEFT, left_power)
39      motors.run(RIGHT, right_power)
40  
41  def get_pitch():
42      """Get the current pitch angle of the platform in degrees"""
43      # Read the raw accelerometer data
44      x, y, z = accel.read()
45  
46      # Calculate pitch and convert angle to degrees
47      pitch = math.asin(y / ONE_G)
48      pitch = pitch * 180 / math.pi
49  
50      # Subtract CodeBot slant
51      pitch = pitch - CODEBOT_SLANT
52  
53      # Make "looking up" a positive angle
54      pitch = -pitch
55  
56      # Round to the nearest integer
57      pitch = round(pitch)
58  
59      return pitch
60  
61  def dashboard(pitch):
62      # Make a bar graph string of up to 30 segments
63      num_bars = abs(pitch) / 3
64  
65      num_bars = round(num_bars)
66  
67      # Use '=' character for the bar graph segments
68      bar_graph = '=' * num_bars  # TODO: what if num_bars is not an integer?
69  
70      # Negative on the left, positive on the right!
71      bars_left = bars_right = ''
72      if pitch < 0:
73          bars_left = bar_graph
74      else:
75          bars_right = bar_graph
76  
77      # Use "align" character for LEFT and RIGHT alignment of bars
78      dash = "[-90 {:>30} {:+3} {:<30} +90]".format(bars_left, pitch, bars_right)
79  
80      print(dash)
81  
82  while True:
83      # Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)
84      drive_bot()
85  
86      # Get the current pitch angle
87      pitch = get_pitch()
88  
89      # Display a beautifully formatted pitch dashboard
90      dashboard(pitch)
91  
92      # Slow down the display for better readability

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 147 of 237



93      sleep_ms(50)
94  

Objective 5 - Get a Degree

About your dashboard...
There's something missing. Your pitch angle is great, and the bar graph is a very helpful visualization of the data.

But you gotta have UNITS for those numbers!
What's up with 90? Is that 90 feet or what?

Get your degree on!

Your keyboard probably doesn't have a key for the "degree" symbol → °

So how are you going to put it into a Python string?

ESCAPE the limitations of your keyboard with...

Escape Sequences
Head over to the string tool in your toolbox and scroll down to see the list of escape sequences. These special characters following
a \ give your strings superpowers!

Internally, strings are really just sequences of numbers. They're translated for display using a Character Encoding.
The first 128 characters are from the standard ASCII character set.

You can use the escape sequence \xNN to insert a numeric character-code into a string, to represent ASCII characters and
beyond!

HEX Me!

The \x escape sequence lets you insert a character code using a number in base-16, aka "hexadecimal" or "Hex".

Why base-16?

Since 16 is a power of 2, it's a nice round number in binary!
A single hex digit holds exactly 4-bits of information ( )
Why not use decimal? A single decimal digit holds about 3.3 bits... (exactly )

Not very convenient if you're filling out a string of fixed-size binary numbers!

Why Care?
Well, so you can put crazy characters in your strings for one thing! For example the degree symbol is extended ASCII code: 176,
which is B0 in hex.

CodeTrek:

 1  from botcore import *
 2  import math
 3  from time import sleep_ms
 4  
 5  # Constants
 6  SPEED_LIMIT = 70
 7  CODEBOT_SLANT = 20  # Measured earlier
 8  ONE_G = 16384
 9  
10  # Global variables for motor power
11  left_power = 0
12  right_power = 0
13  
14  # Enable motors
15  motors.enable(True)
16  
17  def drive_bot():
18      """Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)"""
19      global left_power, right_power
20  

2 = 164

log ​ 102

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 148 of 237



21      # Accelerate slowly if button is pressed
22      if buttons.is_pressed(LEFT):
23          if left_power < SPEED_LIMIT:
24              left_power = left_power + 1
25      elif left_power > 1:
26          # Decelerate if button not pressed
27          left_power = left_power - 2
28  
29      # Accelerate slowly if button is pressed
30      if buttons.is_pressed(RIGHT):
31          if right_power < SPEED_LIMIT:
32              right_power = right_power + 1
33      elif right_power > 1:
34          # Decelerate if button not pressed
35          right_power = right_power - 2
36  
37      # Apply the power!
38      motors.run(LEFT, left_power)
39      motors.run(RIGHT, right_power)
40  
41  def get_pitch():
42      """Get the current pitch angle of the platform in degrees"""
43      # Read the raw accelerometer data
44      x, y, z = accel.read()
45  
46      # Calculate pitch and convert angle to degrees
47      pitch = math.asin(y / ONE_G)
48      pitch = pitch * 180 / math.pi
49  
50      # Subtract CodeBot slant
51      pitch = pitch - CODEBOT_SLANT
52  
53      # Make "looking up" a positive angle
54      pitch = -pitch
55  
56      # Round to the nearest integer
57      pitch = round(pitch)
58  
59      return pitch
60  
61  def dashboard(pitch):
62      # Make a bar graph string of up to 30 segments
63      num_bars = abs(pitch) / 3
64  
65      num_bars = round(num_bars)
66  
67      # Use '=' character for the bar graph segments
68      bar_graph = '=' * num_bars
69  
70      # Negative on the left, positive on the right!
71      bars_left = bars_right = ''
72      if pitch < 0:
73          bars_left = bar_graph
74      else:
75          bars_right = bar_graph
76  
77      # Use "align" character for LEFT and RIGHT alignment of bars
78      dash = "[-90\xB0 {:>30} {:+3}\xB0 {:<30} +90\xB0]".format(bars_left, pitch, bars_right) 

79  
80      print(dash)
81  
82  while True:
83      # Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)
84      drive_bot()
85  
86      # Get the current pitch angle
87      pitch = get_pitch()
88  

Just one line to change here.

Add the escape sequence for degree: \xB0
You will need it in 3 places in your format string.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 149 of 237



89      # Display a beautifully formatted pitch dashboard
90      dashboard(pitch)
91  
92      # Slow down the display for better readability
93      sleep_ms(50)
94  

Goals:

Open up the REPL, type the following string, and press ENTER

"A 90\xB0 turn"

Modify your dashboard format string to add the degree symbol.

Be sure all 3 angles have a nice ° symbol appended!

Tools Found: str, Character Encoding, Escape Sequences

Solution:

 1  from botcore import *
 2  import math
 3  from time import sleep_ms
 4  
 5  # Constants
 6  SPEED_LIMIT = 70
 7  CODEBOT_SLANT = 20  # Measured earlier #@1
 8  ONE_G = 16384
 9  
10  # Global variables
11  left_power = 0
12  right_power = 0
13  
14  # Enable motors
15  motors.enable(True)
16  
17  def drive_bot():
18      """Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)"""
19      global left_power, right_power
20  
21      # Accelerate slowly if button is pressed
22      if buttons.is_pressed(LEFT):
23          if left_power < SPEED_LIMIT:
24              left_power = left_power + 1
25      elif left_power > 1:
26          # Decelerate if button not pressed
27          left_power = left_power - 2
28  
29      # Accelerate slowly if button is pressed
30      if buttons.is_pressed(RIGHT):
31          if right_power < SPEED_LIMIT:
32              right_power = right_power + 1
33      elif right_power > 1:
34          # Decelerate if button not pressed
35          right_power = right_power - 2
36  
37      # Apply the power!
38      motors.run(LEFT, left_power)
39      motors.run(RIGHT, right_power)
40  
41  def get_pitch():
42      """Get the current pitch angle of the platform in degrees"""
43      # Read the raw accelerometer data
44      x, y, z = accel.read()
45  
46      # Calculate pitch and convert angle to degrees
47      pitch = math.asin(y / ONE_G)
48      pitch = pitch * 180 / math.pi

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 150 of 237



49  
50      # Subtract CodeBot slant
51      pitch = pitch - CODEBOT_SLANT
52  
53      # Make "looking up" a positive angle
54      pitch = -pitch
55  
56      # Round to the nearest integer
57      pitch = round(pitch)
58  
59      return pitch
60  
61  def dashboard(pitch):
62      # Make a bar graph string of up to 30 segments
63      num_bars = abs(pitch) / 3
64  
65      num_bars = round(num_bars)
66  
67      # Use '=' character for the bar graph segments
68      bar_graph = '=' * num_bars  # TODO: what if num_bars is not an integer?
69  
70      # Negative on the left, positive on the right!
71      bars_left = bars_right = ''
72      if pitch < 0:
73          bars_left = bar_graph
74      else:
75          bars_right = bar_graph
76  
77      # Use "align" character for LEFT and RIGHT alignment of bars
78      dash = "[-90\xB0 {:>30} {:+3}\xB0 {:<30} +90\xB0]".format(bars_left, pitch, bars_right)
79  
80      print(dash)
81  
82  while True:
83      # Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)
84      drive_bot()
85  
86      # Get the current pitch angle
87      pitch = get_pitch()
88  
89      # Display a beautifully formatted pitch dashboard
90      dashboard(pitch)
91  
92      # Slow down the display for better readability
93      sleep_ms(50)
94  

Quiz 2 - String Theory

Question 1: Which of the following print statements will pad the word "dog" with center alignment?

close print("{:25}".format("dog"))

close print("{:>25}".format("dog"))

done print("{:^25}".format("dog"))

close print("{:<25}".format("dog"))

Question 2: What character is displayed by the following escape sequence?

"\x40"

(try it on the REPL)

done @

close Q

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 151 of 237



close ®

Objective 6 - Roll with the Punches

Pitch Me a Roll

Now that you have your pitch worked out, there's another principal axis you need to be aware of for navigation.

Roll is when your 'bot is leaning to the left or right.

From the above diagram, you can see that the X-axis tilts up and down with roll just like the Y-axis did with pitch.

You can use the same code, just change Y to X!

One More Thing...

You need to display BOTH pitch and roll on your dashboard!

You will have to reduce the width.
Also, enough with the scrolling!

Use the escape sequence for Carriage Return instead.

Carriage Return just moves your cursor back to the beginning of the same line. So the next print() statement will write on top of the
last one!

Hold On!

You might notice there are rock climbing holds attached to the mountain now. Just a little extra texture to spice up your climb. Rock
and Roll!

CodeTrek:

  1  from botcore import *
  2  import math
  3  from time import sleep_ms
  4  
  5  # Constants
  6  SPEED_LIMIT = 70
  7  CODEBOT_SLANT = 20  # Measured earlier 
  8  ONE_G = 16384
  9  
 10  # Global variables for motor power
 11  left_power = 0
 12  right_power = 0
 13  
 14  # Enable motors
 15  motors.enable(True)
 16  
 17  def drive_bot():
 18      """Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)"""
 19      global left_power, right_power
 20  
 21      # Accelerate slowly if button is pressed

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 152 of 237



 22      if buttons.is_pressed(LEFT):
 23          if left_power < SPEED_LIMIT:
 24              left_power = left_power + 1
 25      elif left_power > 1:
 26          # Decelerate if button not pressed
 27          left_power = left_power - 2
 28  
 29      # Accelerate slowly if button is pressed
 30      if buttons.is_pressed(RIGHT):
 31          if right_power < SPEED_LIMIT:
 32              right_power = right_power + 1
 33      elif right_power > 1:
 34          # Decelerate if button not pressed
 35          right_power = right_power - 2
 36  
 37      # Apply the power!
 38      motors.run(LEFT, left_power)
 39      motors.run(RIGHT, right_power)
 40  
 41  def get_axis(val, offset=0):
 42      """Get the given angle of the platform in degrees"""  
 43  
 44      # Calculate axis and convert angle to degrees
 45      axis = math.asin(val / ONE_G)
 46      axis = axis * 180 / math.pi  

 47  
 48      # Apply offset
 49      axis = axis + offset  

 50  
 51      # Invert angle
 52      axis = -axis
 53  
 54      # Round to the nearest integer
 55      axis = round(axis)
 56  
 57      return axis
 58  
 59  def dashboard(val):
 60      # Make a bar graph string
 61      num_bars = abs(val) / 3
 62  
 63      num_bars = round(num_bars)
 64  
 65      # Truncate at 10 segments
 66      num_bars = min(10, num_bars)  

 67  
 68      # Use '=' character for the bar graph segments
 69      bar_graph = '=' * num_bars
 70  
 71      # Negative on the left, positive on the right!
 72      bars_left = bars_right = ''
 73      if val < 0:

Start refactoring your code here!

This is the get_pitch() code, but renamed and with parameters.

Move the accel.read() outside of this function.
val will be y for pitch, or x for roll axis.

Replace the CODEBOT_SLANT with an offset parameter.

roll is not affected by the slant.

Your dashboard() function needs a little work too.

Reduce the width to just 10 segments.
Use the built-in min() function to make sure num_bars never exceeds 10.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 153 of 237



 74          bars_left = bar_graph
 75      else:
 76          bars_right = bar_graph
 77  
 78      # Use "align" character for LEFT and RIGHT alignment of bars
 79      dash = "[-90\xB0 {:>10} {:+3}\xB0 {:<10} +90\xB0]".format(bars_left, val, bars_right)  

 80  
 81      # Print on one line with no "newline" at end.
 82      print(dash, end='')  

 83  
 84  # Blank line, so dashboard displays below the Python prompt
 85  print()  

 86  
 87  while True:
 88      # Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)
 89      drive_bot()
 90  
 91      # Read the raw accelerometer data
 92      x, y, z = accel.read()  

 93  
 94      # Get the current pitch and roll angles
 95      pitch = get_axis(y, -CODEBOT_SLANT)
 96      roll = get_axis(x)  

 97  
 98      # Display a beautifully formatted pitch dashboard
 99      print("P", end=':')
100      dashboard(pitch)
101      print(" R", end=':')
102      dashboard(roll)  

103  
104      # Carriage Return - move back to start of same line
105      print("\r", end='')  
#@10
106  
107      # Slow down the display for better readability
108      sleep_ms(50)
109  

Goals:

Change your width values in the format string to 10 also.

You are going to print this twice on the same line, so remove the default end=newline from print().

When your program starts, go ahead and print a blank line, so your dashboard starts on a fresh line of its own!

Accelerometer read() is moved here, outside of any functions.

Look! Using common code to calculate pitch and roll!

That's the power of refactoring!

Be sure to label the parts of your dashboard.

Notice that again you must supply an end argument to print()
Otherwise it will skip to the next line, and mess up the display!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 154 of 237



Add roll to your dashboard display. Display should have both pitch and roll, labeled as shown:

P:[-90°    +13° ====  +90°] R:[-90°    +7° ==   +90°]

Drive up the slope, and rotate until:

Pitch → + positive

Roll → + positive

Rotate until:

Pitch → + positive

Roll → - negative

Rotate until:

Pitch → - negative

Roll → + positive

Rotate until:

Pitch → - negative

Roll → - negative

Tools
Found:

Escape Sequences, undefined, Refactoring, Parameters, Arguments, and Returns, Built-In Functions, String Formatting,
Accelerometer

Solution:

  1  from botcore import *
  2  import math
  3  from time import sleep_ms
  4  
  5  # Constants
  6  SPEED_LIMIT = 70
  7  CODEBOT_SLANT = 20  # Measured earlier #@1
  8  ONE_G = 16384
  9  
 10  # Global variables
 11  left_power = 0
 12  right_power = 0
 13  
 14  # Enable motors
 15  motors.enable(True)
 16  
 17  def drive_bot():
 18      """Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)"""
 19      global left_power, right_power
 20  
 21      # Accelerate slowly if button is pressed
 22      if buttons.is_pressed(LEFT):
 23          if left_power < SPEED_LIMIT:
 24              left_power = left_power + 1
 25      elif left_power > 1:
 26          # Decelerate if button not pressed
 27          left_power = left_power - 2
 28  
 29      # Accelerate slowly if button is pressed
 30      if buttons.is_pressed(RIGHT):
 31          if right_power < SPEED_LIMIT:
 32              right_power = right_power + 1
 33      elif right_power > 1:
 34          # Decelerate if button not pressed
 35          right_power = right_power - 2
 36  
 37      # Apply the power!
 38      motors.run(LEFT, left_power)
 39      motors.run(RIGHT, right_power)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 155 of 237



 40  
 41  def get_axis(val, offset=0):
 42      """Get the given angle of the platform in degrees"""
 43  
 44      # Calculate axis and convert angle to degrees
 45      axis = math.asin(val / ONE_G)
 46      axis = axis * 180 / math.pi
 47  
 48      # Subtract offset
 49      axis = axis + offset
 50  
 51      # Make "looking up" a positive angle
 52      axis = -axis
 53  
 54      # Round to the nearest integer
 55      axis = round(axis)
 56  
 57      return axis
 58  
 59  def dashboard(val):
 60      # Make a bar graph string
 61      num_bars = abs(val) / 3
 62  
 63      num_bars = round(num_bars)
 64  
 65      # Truncate at 10 segments
 66      num_bars = min(10, num_bars)
 67  
 68      # Use '=' character for the bar graph segments
 69      bar_graph = '=' * num_bars
 70  
 71      # Negative on the left, positive on the right!
 72      bars_left = bars_right = ''
 73      if val < 0:
 74          bars_left = bar_graph
 75      else:
 76          bars_right = bar_graph
 77  
 78      # Use "align" character for LEFT and RIGHT alignment of bars
 79      dash = "[-90\xB0 {:>10} {:+3}\xB0 {:<10} +90\xB0]".format(bars_left, val, bars_right)
 80  
 81      # Print on one line with no "newline" at end.
 82      print(dash, end='')
 83  
 84  # Blank line, so dashboard displays below the Python prompt
 85  print()
 86  
 87  while True:
 88      # Drive the CodeBot with BTN0 and BTN1 ('0' and '1' keys)
 89      drive_bot()
 90  
 91      # Read the raw accelerometer data
 92      x, y, z = accel.read()
 93  
 94      # Get the current pitch and roll angles
 95      pitch = get_axis(y, -CODEBOT_SLANT)
 96      roll = get_axis(x)
 97  
 98      # Display a beautifully formatted pitch dashboard
 99      print("P", end=':')
100      dashboard(pitch)
101      print(" R", end=':')
102      dashboard(roll)
103  
104      # Carriage Return - move back to start of same line
105      print("\r", end='')
106  
107      # Slow down the display for better readability
108      sleep_ms(50)
109  

Objective 7 - Free Solo Climb

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 156 of 237



Free Solo Climb!
You've been navigating this mountain by remote control. Pretty cool.

And you have a sweet dashboard, showing pitch and roll.
With accurate data like that, CodeBot could practically drive itself up the mountain.

So... empower your 'bot to drive itself!

Autonomous Robotics Time!

Coding a remote control device is okay. But coding an intelligent robot that senses its environment and responds to changes is
exciting! A robot like that is autonomous!

Navigating Uphill

Your objective here is to keep CodeBot's nose pointed up the mountain.

That means you want positive pitch: pitch > 0
And if you are pointed straight uphill your roll will be zero: roll == 0

Test drive

Use your previous code to drive on a slope, and watch the roll value. Could you keep pointed uphill based on the roll value
alone?

How about this Algorithm?

Roll → Action
Negative Turn Right
Positive Turn Left

Activate full self driving mode!

CodeTrek:

  1  from botcore import *
  2  import math
  3  from time import sleep_ms
  4  
  5  # Constants
  6  SPEED_LIMIT = 70
  7  CODEBOT_SLANT = 20
  8  ONE_G = 16384
  9  
 10  # Motor control
 11  left_power = 0
 12  right_power = 0
 13  
 14  # Enable motors
 15  motors.enable(True)
 16  
 17  def drive_bot(pitch, roll):
 18      """Drive the CodeBot based on pitch and roll"""  

 19      global left_power, right_power
 20  
 21      left_power_target = right_power_target = SPEED_LIMIT  

AUTONOMY!

That means no more button input in this function. Instead, add parameters for pitch and roll,
so you can drive with data! 

Define "target" power levels.

Default these to "full speed ahead" !

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 157 of 237



 22  
 23      # Control how hard to turn. Reduce for sharper turns.
 24      steer_ratio = 0.7
 25  
 26      # Steer based on 'roll' angle: strive for zero roll!
 27      if roll > 0:
 28          left_power_target *= steer_ratio 
 29      elif roll < 0:
 30          right_power_target *= steer_ratio  

 31   
 32      # Adjust power toward target
 33      left_power += (left_power_target - left_power) * 0.1
 34      right_power += (right_power_target - right_power) * 0.1  

 35  
 36      # Apply the power!
 37      motors.run(LEFT, left_power)
 38      motors.run(RIGHT, right_power)
 39  
 40  def get_axis(val, offset=0):
 41      """Get the given angle of the platform in degrees"""
 42  
 43      # Calculate axis and convert angle to degrees
 44      axis = math.asin(val / ONE_G)
 45      axis = axis * 180 / math.pi
 46  
 47      # Subtract offset
 48      axis = axis + offset
 49  
 50      # Make "looking up" a positive angle
 51      axis = -axis
 52  
 53      # Round to the nearest integer
 54      axis = round(axis)
 55  
 56      return axis
 57  
 58  def dashboard(val):
 59      # Make a bar graph string
 60      num_bars = abs(val) / 3
 61  
 62      num_bars = round(num_bars)
 63  
 64      # Truncate at 10 segments
 65      num_bars = min(10, num_bars)
 66  
 67      # Use '=' character for the bar graph segments
 68      bar_graph = '=' * num_bars
 69  
 70      # Negative on the left, positive on the right!
 71      bars_left = bars_right = ''
 72      if val < 0:
 73          bars_left = bar_graph
 74      else:
 75          bars_right = bar_graph
 76  
 77      # Use "align" character for LEFT and RIGHT alignment of bars
 78      dash = "[-90\xB0 {:>10} {:+3}\xB0 {:<10} +90\xB0]".format(bars_left, val, bars_right)
 79  
 80      # Print on one line with no "newline" at end.

Steer based on roll

Zero roll is straight uphill. Non-zero means TURN!
Use steer_ratio to adjust the target speed.

No Sudden Moves!

Give your power levels a nudge toward the targets.

Remember, drive_bot() is called constantly from your main loop.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 158 of 237



 81      print(dash, end='')
 82  
 83  # Blank line, so dashboard displays below the Python prompt
 84  print()
 85  
 86  while True:
 87      # Read the raw accelerometer data
 88      x, y, z = accel.read()
 89  
 90      # Get the current pitch and roll angles
 91      pitch = get_axis(y, -CODEBOT_SLANT)
 92      roll = get_axis(x)
 93  
 94      drive_bot()  #TODO: pass-in pitch and roll here  

 95  
 96      # Display a beautifully formatted pitch dashboard
 97      print("P", end=':')
 98      dashboard(pitch)
 99      print(" R", end=':')
100      dashboard(roll)
101  
102      # Carriage Return - move back to start of same line
103      print("\r", end='')
104  
105      # Slow down the display for better readability
106      sleep_ms(50)
107  

Goals:

Climb the mountain autonomously

Remove the buttons from your code.

No more remote control - this 'bot is off the leash!

Reach the first summit

Go beyond the first summit.

Into the Valley of Reconsideration!

Reverse Course - Back to the Summit!

Return from the Valley of Reconsideration

Tools Found: Buttons, Parameters, Arguments, and Returns, Loops, Keyword and Positional Arguments

Solution:

  1  from botcore import *
  2  import math
  3  from time import sleep_ms
  4  
  5  # Constants
  6  SPEED_LIMIT = 70
  7  CODEBOT_SLANT = 20  # Measured earlier #@1
  8  ONE_G = 16384
  9  
 10  # Motor control
 11  left_power = 0
 12  right_power = 0
 13  

Pass pitch and roll as arguments to drive_bot()

A little work to do here...

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 159 of 237



 14  # Enable motors
 15  motors.enable(True)
 16  
 17  def drive_bot(pitch, roll):
 18      """Drive the CodeBot based on pitch and roll"""
 19      global left_power, right_power
 20  
 21      # Strive for pitch > 0 and roll == 0
 22      # roll+ --> steer left
 23      # roll- --> steer right
 24  
 25      left_power_target = right_power_target = SPEED_LIMIT
 26  
 27      steer_ratio = 0.7
 28  
 29      if roll > 0:
 30          left_power_target *= steer_ratio 
 31      elif roll < 0:
 32          right_power_target *= steer_ratio
 33   
 34      # Adjust power toward target
 35      left_power += (left_power_target - left_power) * 0.1
 36      right_power += (right_power_target - right_power) * 0.1
 37  
 38      # Apply the power!
 39      motors.run(LEFT, left_power)
 40      motors.run(RIGHT, right_power)
 41  
 42  def get_axis(val, offset=0):
 43      """Get the given angle of the platform in degrees"""
 44  
 45      # Calculate axis and convert angle to degrees
 46      axis = math.asin(val / ONE_G)
 47      axis = axis * 180 / math.pi
 48  
 49      # Subtract offset
 50      axis = axis + offset
 51  
 52      # Make "looking up" a positive angle
 53      axis = -axis
 54  
 55      # Round to the nearest integer
 56      axis = round(axis)
 57  
 58      return axis
 59  
 60  def dashboard(val):
 61      # Make a bar graph string
 62      num_bars = abs(val) / 3
 63  
 64      num_bars = round(num_bars)
 65  
 66      # Truncate at 10 segments
 67      num_bars = min(10, num_bars)
 68  
 69      # Use '=' character for the bar graph segments
 70      bar_graph = '=' * num_bars
 71  
 72      # Negative on the left, positive on the right!
 73      bars_left = bars_right = ''
 74      if val < 0:
 75          bars_left = bar_graph
 76      else:
 77          bars_right = bar_graph
 78  
 79      # Use "align" character for LEFT and RIGHT alignment of bars
 80      dash = "[-90\xB0 {:>10} {:+3}\xB0 {:<10} +90\xB0]".format(bars_left, val, bars_right)
 81  
 82      # Print on one line with no "newline" at end.
 83      print(dash, end='')
 84  
 85  # Blank line, so dashboard displays below the Python prompt
 86  print()
 87  
 88  while True:

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 160 of 237



 89      # Read the raw accelerometer data
 90      x, y, z = accel.read()
 91  
 92      # Get the current pitch and roll angles
 93      pitch = get_axis(y, -CODEBOT_SLANT)
 94      roll = get_axis(x)
 95  
 96      drive_bot(pitch, roll)
 97  
 98      # Display a beautifully formatted pitch dashboard
 99      print("P", end=':')
100      dashboard(pitch)
101      print(" R", end=':')
102      dashboard(roll)
103  
104      # Carriage Return - move back to start of same line
105      print("\r", end='')
106  
107      # Slow down the display for better readability
108      sleep_ms(50)
109  

Objective 8 - First Ascent

Escalation!
Ready to put your climbing code to the test?

The climbing holds are back!
Just the thing to throw an unsuspecting robot off course !

Give it a Go

Try your code on this mountain course. It's not gonna be pretty!

To conquer this new challenge you must add a bit more intelligence to your self-driving code.

Detect when your 'bot has crashed into an obstacle, and add some avoidance code.
How to detect a crash? Well, if you pitch or roll more than 45° that's a pretty sure sign things are getting off-kilter!

Keep Trying!
You may not make it on your first few attempts.

CodeTrek:

  1  from botcore import *
  2  import math
  3  from time import sleep_ms
  4  
  5  # Constants
  6  SPEED_LIMIT = 70
  7  CODEBOT_SLANT = 20
  8  ONE_G = 16384
  9  
 10  # Motor control
 11  left_power = 0
 12  right_power = 0
 13  
 14  # Crash detection
 15  crash_backoff = 0  

 16  
 17  # Enable motors
 18  motors.enable(True)

A global crash-backoff-countdown.

When a crash is detected this will be set to countdown while CodeBot recovers.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 161 of 237



 19  
 20  def drive_bot(pitch, roll):
 21      """Drive the CodeBot based on pitch and roll"""
 22      global left_power, right_power
 23  
 24      left_power_target = right_power_target = SPEED_LIMIT
 25  
 26      # Back-up a bit if crash detected
 27      crash = pitch > 45 or abs(roll) > 45
 28      if crash:
 29          crash_backoff = 20  # Number of loop cycles:
 30                              #  increase for longer backoff time. 

 31  
 32      if crash_backoff:
 33          # Stomp on the brakes!
 34          left_power = -SPEED_LIMIT
 35          right_power = -SPEED_LIMIT
 36          crash_backoff -= 1  

 37  
 38      steer_ratio = 0.7
 39  
 40      if roll > 0:
 41          left_power_target *= steer_ratio 
 42      elif roll < 0:
 43          right_power_target *= steer_ratio
 44   
 45      # Adjust power toward target
 46      left_power += (left_power_target - left_power) * 0.1
 47      right_power += (right_power_target - right_power) * 0.1
 48  
 49      # Apply the power!
 50      motors.run(LEFT, left_power)
 51      motors.run(RIGHT, right_power)
 52  
 53  def get_axis(val, offset=0):
 54      """Get the given angle of the platform in degrees"""
 55  
 56      # Calculate axis and convert angle to degrees
 57      axis = math.asin(val / ONE_G)
 58      axis = axis * 180 / math.pi
 59  
 60      # Subtract offset
 61      axis = axis + offset
 62  
 63      # Make "looking up" a positive angle
 64      axis = -axis
 65  
 66      # Round to the nearest integer
 67      axis = round(axis)
 68  
 69      return axis
 70  
 71  def dashboard(val):
 72      # Make a bar graph string
 73      num_bars = abs(val) / 3

Detect a "Crash"

If the pitch or roll get crazy, start the "backoff" countdown.

Remember, this function is called repeatedly from your main loop.
That's why crash_backoff has to be global, so it is retained between function calls.

You did remember to add it to the global list, right?

When in the "backoff" state:

Set the motor power variables directly.
Not "nudging" toward a target value in this case. Slam on those brakes!

Would it be better to turn while reversing? Perhaps...

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 162 of 237



 74  
 75      num_bars = round(num_bars)
 76  
 77      # Truncate at 10 segments
 78      num_bars = min(10, num_bars)
 79  
 80      # Use '=' character for the bar graph segments
 81      bar_graph = '=' * num_bars
 82  
 83      # Negative on the left, positive on the right!
 84      bars_left = bars_right = ''
 85      if val < 0:
 86          bars_left = bar_graph
 87      else:
 88          bars_right = bar_graph
 89  
 90      # Use "align" character for LEFT and RIGHT alignment of bars
 91      dash = "[-90\xB0 {:>10} {:+3}\xB0 {:<10} +90\xB0]".format(bars_left, val, bars_right)
 92  
 93      # Print on one line with no "newline" at end.
 94      print(dash, end='')
 95  
 96  # Blank line, so dashboard displays below the Python prompt
 97  print()
 98  
 99  while True:
100      # Read the raw accelerometer data
101      x, y, z = accel.read()
102  
103      # Get the current pitch and roll angles
104      pitch = get_axis(y, -CODEBOT_SLANT)
105      roll = get_axis(x)
106  
107      drive_bot(pitch, roll)
108  
109      # Display a beautifully formatted pitch dashboard
110      print("P", end=':')
111      dashboard(pitch)
112      print(" R", end=':')
113      dashboard(roll)
114  
115      # Carriage Return - move back to start of same line
116      print("\r", end='')
117  
118      # Slow down the display for better readability
119      sleep_ms(50)
120  

Goals:

Cross Panel 1

Cross Panel 2

Cross Panel 3

Cross Panel 4

Cross Panel 5

Cross Panel 6

Cross Panel 7

Tools Found: Locals and Globals

Solution:

  1  from botcore import *
  2  import math

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 163 of 237



  3  from time import sleep_ms
  4  
  5  # Constants
  6  SPEED_LIMIT = 70
  7  CODEBOT_SLANT = 20
  8  ONE_G = 16384
  9  
 10  # Motor control
 11  left_power = 0
 12  right_power = 0
 13  
 14  # Crash detection
 15  crash_backoff = 0  #@1
 16  
 17  # Enable motors
 18  motors.enable(True)
 19  
 20  def drive_bot(pitch, roll):
 21      """Drive the CodeBot based on pitch and roll"""
 22      global left_power, right_power, crash_backoff
 23  
 24      left_power_target = right_power_target = SPEED_LIMIT
 25  
 26      # Back-up a bit if crash detected
 27      crash = pitch > 45 or abs(roll) > 45
 28      if crash:
 29          crash_backoff = 20
 30  
 31      if crash_backoff:
 32          # Stomp on the brakes!
 33          left_power = -SPEED_LIMIT
 34          right_power = -SPEED_LIMIT
 35          crash_backoff -= 1
 36  
 37      steer_ratio = 0.7
 38  
 39      if roll > 0:
 40          left_power_target *= steer_ratio 
 41      elif roll < 0:
 42          right_power_target *= steer_ratio
 43   
 44      # Adjust power toward target
 45      left_power += (left_power_target - left_power) * 0.1
 46      right_power += (right_power_target - right_power) * 0.1
 47  
 48      # Apply the power!
 49      motors.run(LEFT, left_power)
 50      motors.run(RIGHT, right_power)
 51  
 52  def get_axis(val, offset=0):
 53      """Get the given angle of the platform in degrees"""
 54  
 55      # Calculate axis and convert angle to degrees
 56      axis = math.asin(val / ONE_G)
 57      axis = axis * 180 / math.pi
 58  
 59      # Subtract offset
 60      axis = axis + offset
 61  
 62      # Make "looking up" a positive angle
 63      axis = -axis
 64  
 65      # Round to the nearest integer
 66      axis = round(axis)
 67  
 68      return axis
 69  
 70  def dashboard(val):
 71      # Make a bar graph string
 72      num_bars = abs(val) / 3
 73  
 74      num_bars = round(num_bars)
 75  
 76      # Truncate at 10 segments
 77      num_bars = min(10, num_bars)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 164 of 237



 78  
 79      # Use '=' character for the bar graph segments
 80      bar_graph = '=' * num_bars
 81  
 82      # Negative on the left, positive on the right!
 83      bars_left = bars_right = ''
 84      if val < 0:
 85          bars_left = bar_graph
 86      else:
 87          bars_right = bar_graph
 88  
 89      # Use "align" character for LEFT and RIGHT alignment of bars
 90      dash = "[-90\xB0 {:>10} {:+3}\xB0 {:<10} +90\xB0]".format(bars_left, val, bars_right)
 91  
 92      # Print on one line with no "newline" at end.
 93      print(dash, end='')
 94  
 95  # Blank line, so dashboard displays below the Python prompt
 96  print()
 97  
 98  while True:
 99      # Read the raw accelerometer data
100      x, y, z = accel.read()
101  
102      # Get the current pitch and roll angles
103      pitch = get_axis(y, -CODEBOT_SLANT)
104      roll = get_axis(x)
105  
106      drive_bot(pitch, roll)
107  
108      # Display a beautifully formatted pitch dashboard
109      print("P", end=':')
110      dashboard(pitch)
111      print(" R", end=':')
112      dashboard(roll)
113  
114      # Carriage Return - move back to start of same line
115      print("\r", end='')
116  
117      # Slow down the display for better readability
118      sleep_ms(50)
119  

Mission 13 - Going the Distance
Ready to go the distance? Then you'll need to get to know CodeBot's wheel encoders! This mission gives you all the gritty details of
those glorious rotating discs.

Objective 1 - Encoder Check

Check your Encoders
This is a new sensor, and as usual you will start by testing the basics of how it works. The

wheel encoders have just one key API function:

# Read the selected sensor (LEFT or RIGHT)
# Returns an ADC count 0-4095
val = enc.read(num)

Notice this read() function returns an ADC value.

This analog value represents the amount of light shining through the slot in the disc.
There are 20 slots in the disc, so you should see 20 light/dark transitions as the wheel rotates 360°.

Create a new file!

Use the File → New File menu to create a new file called "encoder_check.py"

CodeTrek:

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 165 of 237



 1  from botcore import * 

 2  
 3  # Start rotating slowly
 4  motors.run(LEFT, 5)
 5  motors.run(RIGHT, ?)
 6  motors.enable( ?? )   

 7  
 8  # Loop forever, printing the LEFT encoder value
 9  while True:
10      val = enc.read(LEFT)
11      print(val)
12      

13  

Goal:

First get your bot moving!

Start the motors rotating slowly so the wheel encoders are turning.

Write a while loop that infinitely reads and prints the LEFT wheel encoder analog value to the console.

Tools Found: Wheel Encoders, API, Parameters, Arguments, and Returns, Analog to Digital Conversion, Motors, Loops, import

Solution:

 1  from botcore import *
 2  
 3  motors.run(LEFT, 5)
 4  motors.run(RIGHT, -5)
 5  motors.enable(True)
 6  
 7  while True:
 8      val = enc.read(LEFT)
 9      print(val)
10  

Objective 2 - No Repetition Repetition

That's a lot of output data!
Your Python code gets around that while loop pretty quickly.

It's hard to read the output with so many numbers streaming by!

If you stop your program and scroll the console window up, you will notice repeated numbers.

Can you guess why enc.read() would return the same value multiple times?

Try slowing down the motors...

You will notice even more repeated numbers. Your loop is faster than the wheel encoders.

Does this repetition matter?

No surprise, the encoders are part of the botcore library too!

TODO:

Add code to make the RIGHT wheel move backwards, so your bot doesn't run into a wall while you're watching the console.
Don't forget to enable() the motors !

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 166 of 237



Well, yes! This mission isn't just about printing data. You are going to count the slots as they go by, so you can measure distance
and rotation. So throwing away those duplicate samples will be a good first step in your data processing work.

CodeTrek:

 1  from botcore import *
 2  
 3  motors.run(LEFT, 5)
 4  motors.run(RIGHT, -5)
 5  motors.enable(True)
 6  
 7  # Initialize a variable to hold the previous encoder value
 8  prev = 0 

 9  
10  while True:
11      val = enc.read(LEFT)
12  
13      # Print the value only if it has changed
14      if val != prev:
15          print(val)  

16  
17          # Remember the previous value processed.
18          prev = val  

19  

Hints:

Save your previous value
You will need another variable to hold the previous value.

This prev variable can be initialized before your loop begins.

Inside your Loop:

1. Read the new value.
2. Compare it with the previous one.
3. If they are different, print the new value.
4. Overwrite the previous value with the current new value before the loop repeats.

Goal:

Discard duplicate values before printing

Add code to compare the new enc.read(LEFT) value with the previous one.

If they're different, print the new value.

Otherwise ignore it! (throw it in the "bit bucket", eh?)

Initialize Your state

As your loop runs, you need to remember this one thing:

What was the previous value?

Knowing this, you can filter-out duplicates!

Ignore the duplicate values!

Update your state.

You now have a new prev value!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 167 of 237



Tools Found: Loops, Wheel Encoders, Print Function, State

Solution:

 1  from botcore import *
 2  
 3  motors.run(LEFT, 5)
 4  motors.run(RIGHT, -5)
 5  motors.enable(True)
 6  
 7  prev = 0
 8  while True:
 9      val = enc.read(LEFT)
10      if val != prev:
11          print(val)
12          prev = val
13  

Objective 3 - Visualize the Sensor

Getting Graphical with the Console
Okay I have to admit, those streaming numbers on the console are just a blur to me. It's
hard to make out what's actually going on with the sensors.

Wouldn't a Bar Chart be nice?

But Hey, it's a Text Console, Right?

Yes, but... You can make some ASCII graphics!

Making Bar Chart style visualizations is really easy with Python strings. You could make the console print numbers like this:

4 ****
7 *******
8 ********
8 ********
7 *******
2 **

How to make repeated character strings

Say you have a number N and you want to make a string of characters that long.

You might code a loop to make the '****' strings.
But Python gives you an easier way.
Multiply a string and an int and you get a repeated string!

Try it on the REPL!

You can type something like:

>>> 'M' * 10
'MMMMMMMMMM'

Try it with different strings, even your name!

Goal:

On the REPL

Make a horizontal line of exactly 80 equals signs.

It should look like '=====...' out to 80 characters.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 168 of 237



Tools Found: Character Encoding, str, Print Function, int, undefined

Solution:

N/A

Quiz 1 - String multiplication

Question 1: What shape will the following code print?

(Try on the REPL if you need to!)

for i in range(10):
    print("*" * i)

done Triangle

close Circle

close Square

close Hyperbola

Objective 4 - Graph It

Graph the Wheel Encoder Values

Back to your wheel encoder test program. Your next objective is to graph the encoder values using your new Python string skills.

The values it prints out can range from 0-4095 according to the documentation for these sensors. So you're going to need to scale
down those values to make a bar graph that fits the console.

If you divide every value by 100 then the max would be: 
Hey, 40 characters as a max width would be great!

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.run(LEFT, 50)
 5  motors.run(RIGHT, -50)
 6  motors.enable(True)
 7  
 8  # Initialize a variable to hold the previous encoder value
 9  prev = 0
10  
11  while True:
12      val = enc.read(LEFT)
13  
14      # Print the value only if it has changed
15      if val != prev:
16  
17          # Scale down the encoder value from 4096 to around 40 max
18          n = val / 100
19          print(val, n * '*')  # Bar graph! 

​ ≈ 40100
4095

Bar Graph!

Two steps here:

1. Scale down val to a nice neat variable n
2. Use the multiply operator to repeat the '*' for a nifty bar-graph effect.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 169 of 237



20  
21          # Remember the previous value processed.
22          prev = val
23  

Hints:

ASCII Bar Graph Time!
Kicking it old school.

It's nice that Python lets you multiply a number by a string to make it easy to repeat. Can you multiply by any number?

Hmmmm...

The goal here is for you to encounter an ERROR
Just type the code as shown in the CodeTrek, and you'll get an error when you run it.

Complete this Objective by triggering the error message.

Goal:

Graph Time?

Try the code exactly as shown in the CodeTrek to print a '*' graph.

Just use n = val / 100 and multiply that by the '*' character.

What could go wrong?

Tools Found: Wheel Encoders, Math Operators, str, list, tuple, float, int, Variables

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.run(LEFT, 50)
 5  motors.run(RIGHT, -50)
 6  motors.enable(True)
 7  
 8  prev = 0
 9  while True:
10      val = enc.read(LEFT)
11      if val != prev:
12          n = val / 100
13          print(val, n * '*')
14          prev = val
15  

Objective 5 - Bar Chart

Fix the Error and Get Charting!
That TypeError happens because Python doesn't support multiplying a string by a float.

It would be strange to have a string with fractions of letters, right?

Say you do n = val / 100 when val is 315. What do you really want n to be?

In that case you want n = 3 so you'd have '***' in your bar chart.
You could use Python's built-in round() function to convert  to 3. But there is an even easier way, if you only want the

integer portion of division.
​100

315

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 170 of 237



Integer Division Operator

Check out the table of Math Operators in Python. See the one called "Integer Division"? It is a double-divide symbol //. Play with
it on the REPL. Try typing both normal and integer divisions:

315 / 100
315 // 100

So that gives you a nice, simple way to fix the bug!

Goals:

Test "normal" division on the REPL

Enter 315 / 100 and see what you get.

Test integer division on the REPL

Enter 315 // 100 and see what you get.

Fix the bug and view your graph
Use Integer Division to fix the TypeError in your code, and watch your groovy-graph glide on by!

Tools Found: str, float, Built-In Functions, int, Math Operators, Wheel Encoders, Analog to Digital Conversion

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  motors.run(LEFT, 50)
 5  motors.run(RIGHT, -50)
 6  motors.enable(True)
 7  
 8  # Initialize a variable to hold the previous encoder value
 9  prev = 0
10  
11  while True:
12      val = enc.read(LEFT)
13  
14      # Print the value only if it has changed
15      if val != prev:
16  
17          # Scale down the encoder value from 4096 to around 40 max
18          n = val // 100  # Integer division
19          print(val, n * '*')  # Bar graph!
20  
21          # Remember the previous value processed.
22          prev = val
23  

Objective 6 - Count Slots

Count the Slots
Now that you can visualize what's going on with the encoder sensors it's time to translate those values into a measurement of how far
the wheel has turned.

Rather than graphing the analog value, make a True/False boolean decision: SLOT or NOT?

Use a comparison operator with a threshold midway between 0 and 4095 to detect the slot.
Track the previous True/False state just like you did with val
And count the changes of that True/False state.

Check Your Pulse!

Take a look at the picture to the right. It's showing how your code would read True or False as the wheel turns.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 171 of 237



Like a sideways, flat-top version of your bar chart!
The count increases at every False → True or True → False transition.

Save to a new file!

You are moving on from your basic encoder check test-code.

Use the File → Save As menu to save your code to a new file called
"enc_drive.py"

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Choose a threshold value midway through the slot range
 5  SLOT_THRESH = 2000  

 6  
 7  # Get those motors running SLOWLY for testing
 8  motors.run(LEFT, 5)
 9  motors.run(RIGHT, -5)
10  motors.enable(True)
11  
12  # Initialize a variable to hold the previous encoder value
13  was_slot = False 

14  
15  # Initialize a variable to hold the slot count
16  count = 0  

17  
18  while True:
19      # Read the latest value
20      val = enc.read(LEFT)
21  
22      # Is it a slot, or not?
23      is_slot = val > SLOT_THRESH  

24  
25      # Print the value only if it has changed
26      if is_slot != was_slot:
27  
28          # Transitioned to/from a slot!
29          count += 1
30          print('Count is ', count)  

This is a constant that you choose.

Pick a number based on what you observed with your bar chart.
Ideally you'd like the "mountains" and "valleys" to be about equal width.

Previous Value of is_slot

Change the code here. Instead of a prev copy of the encoder val you need to save a bool indicating 
whether a slot was detected on the previous comparison check.

Argh... More Pieces of State

"State" is just a name for stuff your program has to "remember" while it runs.

In this case, you have to keep track of the count.

Check the latest value against the threshold...

The result of your comparison will be a boolean.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 172 of 237



31  
32          # Remember the previous value processed.
33          was_slot = is_slot  

34  

Goals:

Print the Running Count

Modify your code to print() the encoder count to the console.

As your bot rotates, I want to see 40 counts every 360° of wheel rotation like so:

Count is 1
Count is 2
...

Use Augmented Assignment to Update count

Save a little typing, and show me that you've mastered this coding shortcut.

Tools Found: Analog to Digital Conversion, bool, Comparison Operators, Wheel Encoders, Assignment, Constants

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Choose a threshold value midway through the slot range
 5  SLOT_THRESH = 2000
 6  
 7  # Get those motors running SLOWLY for testing
 8  motors.run(LEFT, 5)
 9  motors.run(RIGHT, -5)
10  motors.enable(True)
11  
12  # Initialize a variable to hold the previous encoder value
13  was_slot = False
14  
15  # Initialize a variable to hold the slot count
16  count = 0
17  
18  while True:
19      val = enc.read(LEFT)
20      is_slot = val > SLOT_THRESH
21  
22      # Print the value only if it has changed
23      if is_slot != was_slot:
24  
25          # Transitioned to/from a slot!
26          count += 1

Update the count

Add 1 to the current count, and save it back.

Use an augmented assignment statement for this.
Then print() the count to the console for *testing!

Wait! Before you go...

Your slot status has changed!

Don't forget to save this new was_slot state before continuing.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 173 of 237



27          print('Count is ', count)
28  
29          # Remember the previous value processed.
30          was_slot = is_slot
31  

Quiz 2 - Integer division and augmented assignment

Question 1: Which two of the following are True?

done 315 // 100 < 315 / 100

done 1 // 2 == 0

close 3 // 4 > 1 / 2

close round(3 / 4) == 3 // 4

Question 2: What is printed by the following code?

count = 5
count += 1
count /= 2
print(count)

done 3

close 6

close 4

close 12

Objective 7 - Drive with Precision

Driving the Distance

It's time to put those wheel encoders to their proper use: controlling the wheels!

Now that you can count the slots, it only takes a small change to your code to make your bot drive only until a specified number of
slots have gone by.

Counting Slots or Driving a Distance?

Okay, you'll get to converting between slot-count and actual distance in the next Objective.

For now, just measure distance in "counts"
After all more counts means the bot has traveled farther, right?

The CodeTrek will guide you in changing your code.

CodeTrek:

 1  from botcore import *
 2  
 3  # Choose a threshold value midway through the slot range
 4  SLOT_THRESH = 2000
 5  
 6  # Move SLOWLY forward!
 7  motors.run(LEFT, 10)
 8  motors.run(RIGHT, 10)  

Be sure to drive forward

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 174 of 237



 9  motors.enable(True)
10  
11  def drive_counts(n):  

12      """Drive forward for n counts"""
13      # Initialize a variable to hold the previous encoder value
14      was_slot = False
15  
16      # Initialize a variable to hold the slot count
17      count = 0
18  
19      while count <= n:  

20          val = enc.read(LEFT)
21          is_slot = val > SLOT_THRESH
22  
23          # Print the value only if it has changed
24          if is_slot != was_slot:
25  
26              # Transitioned to/from a slot!
27              count += 1
28              print('Count is ', count)
29  
30              # Remember the previous value processed.
31              was_slot = is_slot
32  
33  # Drive for 1 full wheel rotation
34  drive_counts(40)  

35  

Hint:

Be sure to drive exactly 40 counts.

That's one revolution of the wheel.

After that, your program ends, motor stops, and you're spot-on!

Goal:

Drive forward 40 counts

That's one full rotation of the wheel, then STOP!

You can watch the spokes as your bot drives slowly forward, and verify that it goes 360°

Both wheels should have the same speed.
Keep it slow to start with.

Define a new function that you can call to drive() with precision!

You can use the Editor Shortcuts to move your existing block of code inside this funcdtion.
Select the code and press TAB to indent it properly inside your function.

No more infinite loop !

Now your while loop should stop after n counts.

Don't forget to CALL your new function!

The "def" above just defined the function so Python knows about it.

Now you have to call it to actually run that code.
Be sure to pass your function the number of counts you want to move forward.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 175 of 237



Tools Found: Wheel Encoders, Functions, Editor Shortcuts, Loops

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  # Choose a threshold value midway through the slot range
 5  SLOT_THRESH = 2000
 6  
 7  # Move SLOWLY forward!
 8  motors.run(LEFT, 10)
 9  motors.run(RIGHT, 10)
10  motors.enable(True)
11  
12  def drive_counts(n):
13      """Drive forward for n counts"""
14      # Initialize a variable to hold the previous encoder value
15      was_slot = False
16  
17      # Initialize a variable to hold the slot count
18      count = 0
19  
20      while count < n:
21          val = enc.read(LEFT)
22          is_slot = val > SLOT_THRESH
23  
24          # Print the value only if it has changed
25          if is_slot != was_slot:
26  
27              # Transitioned to/from a slot!
28              count += 1
29              print('Count is ', count)
30  
31              # Remember the previous value processed.
32              was_slot = is_slot
33  
34  # Drive for 1 full wheel rotation
35  drive_counts(40)

Objective 8 - Sensing Centimeters

Measure Up!
It's time to convert those "counts" into real measurements.

Whether it's on a highway or a basketball court, you're going to have to navigate using standard units of distance.
CodeBot's size makes centimeters (cm) a nice unit of measurement.

(Overall length of CodeBot is about 15cm)

Counts to centimeters

How are you going to convert counts to centimeters?

The distance around a circle is called the circumference.
You might recall the math: 

Oh yeah, π "Pi" - that's like 3.14 or something?

Close, but you can do even better. You can't see it, but CodeBot's carrying around a really fancy scientific calculator!

Python provides a very rich set of math operations for your code to use when needed.
And any scientific calculator worth its salt has a button for π !

Rather than defining your own constant to approximate Pi, you should use the one from the Python math module.

import math
WHEEL_DIA_CM = 6.5

circumference = π ∗ diameter

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 176 of 237



WHEEL_CIRC = (math.pi * WHEEL_DIA_CM)

The code above gives you the accurate circumference of CodeBot's wheel, in centimeters.

Using this knowledge, the CodeTrek will guide you as you add the capability to drive a specified distance in centimeters, not
just counts!
Check the Hints for more information on the calculations.

CodeTrek:

 1  from botcore import *
 2  import math
 3  
 4  # Choose a threshold value midway through the slot range
 5  SLOT_THRESH = 2000
 6  WHEEL_DIA_CM = 6.5
 7  WHEEL_CIRC_CM = math.pi * WHEEL_DIA_CM
 8  COUNTS_PER_REV = 40  

 9  
10  def drive_counts(n):  

11      """Drive forward for n counts"""
12      # Initialize a variable to hold the previous encoder value
13      was_slot = False
14  
15      # Initialize a variable to hold the slot count
16      count = 0
17  
18      while count <= n:
19          val = enc.read(LEFT)
20          is_slot = val > SLOT_THRESH
21  
22          # Print the value only if it has changed
23          if is_slot != was_slot:
24  
25              # Transitioned to/from a slot!
26              count += 1
27              print('Count is ', count)
28  
29              # Remember the previous value processed.
30              was_slot = is_slot
31  
32  def cm_to_counts(cm):
33      return cm * (COUNTS_PER_REV / WHEEL_CIRC_CM)  

34  
35  def drive_dist(cm, power_lft, power_rt):
36      """Drive forward 'cm' centimeters at specified motor power"""  

37      counts = cm_to_counts(cm)
38      

Define the Constants

The wheel diameter measures 6.5cm, and doesn't change.

From that go ahead and calculate the circumference - it won't change either!
And for readability define the number of counts for a full revolution as a constant also.

Your drive_counts() function can stay the same.

Convert centimeters to counts.

Multiply by the ratio of counts/cm based on a full wheel revolution.
See the hints for more on this calculation.

A new function to drive a specified distance in real centimeters!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 177 of 237



39      # Start the motors at the given left/right power levels
40      # TODO  

41  
42      drive_counts(counts)
43  
44      # Disable the motors to stop moving now
45      # TODO  

46  
47  # Drive 100cm forward at 30% power
48  drive_dist(100, 30, 30)  

Hint:

Converting centimeters to counts
You just need to multiply the centimeters by a number...

What number?

A ratio: How many counts per centimeter?

You know the counts for a full revolution = 40
You know the centimeters for a full revolution = π * 6.5 ≈ 20.4

So that's about 1.96 counts per cm

Multiply the distance by 1.96 to get the number of counts!

Use more exact numbers in your code!

Use π from the math module and calculate the wheel circumference.

Goal:

Drive your codebot to Checkpoint 1, and stop.

The small black lines on the floor are 10cm apart. The larger ones are 1m apart.

Stop your motors as soon as you contact the Checkpoint.

Tools Found: Constants, Math Module, Wheel Encoders, Readability, Motors

Solution:

 1  from botcore import *
 2  import math
 3  
 4  # Choose a threshold value midway through the slot range
 5  SLOT_THRESH = 2000
 6  WHEEL_DIA_CM = 6.5

Add code here to set the power and enable the motors.

Add code to STOP those motors!

Try moving forward for 100cm

That's 1 meter for CodeBot... One giant leap for your navigation code!

counts per cm = ​ ⋅ ​(
1  rev

40 counts
) (

20.4 cm
1  rev

)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 178 of 237



 7  WHEEL_CIRC_CM = math.pi * WHEEL_DIA_CM
 8  COUNTS_PER_REV = 40
 9  
10  def drive_counts(n):
11      """Drive forward for n counts"""
12      # Initialize a variable to hold the previous encoder value
13      was_slot = False
14  
15      # Initialize a variable to hold the slot count
16      count = 0
17  
18      while count <= n:
19          val = enc.read(LEFT)
20          is_slot = val > SLOT_THRESH
21  
22          # Print the value only if it has changed
23          if is_slot != was_slot:
24  
25              # Transitioned to/from a slot!
26              count += 1
27              print('Count is ', count)
28  
29              # Remember the previous value processed.
30              was_slot = is_slot
31  
32  def cm_to_counts(cm):
33      return (cm / WHEEL_CIRC_CM) * COUNTS_PER_REV
34  
35  def drive_dist(cm, power_lft, power_rt):
36      """Drive forward 'cm' centimeters at specified motor power"""
37      counts = cm_to_counts(cm)
38      motors.run(LEFT, power_lft)
39      motors.run(RIGHT, power_rt)
40      motors.enable(True)
41      drive_counts(counts)
42      motors.enable(False)
43  
44  # Drive N cm forward
45  drive_dist(140, 30, 30)
46  

Objective 9 - Free Throw Rotation

Rotating with Precision

You know how to drive the wheels a precise distance.

But how to turn that into a rotation?
Actually, your drive_dist() function is already doing most of the work!

When your 'bot rotates in place, the wheels trace a circular path.

The diameter of the circle shown at right is called the Wheel Track width.
So if the 'bot rotates through a full 360° circle the wheels travel its full
circumference!

Ex: To rotate 180° each wheel would need to travel:

For other angles substitute desired angle for 180° in the above formula!

Direction of Rotation: Clockwise or Counter-clockwise?

Now that you know how to calculate the distance required to rotate a given angle, what about specifying the direction?

The table below shows signs you would use for LEFT and RIGHT motor power for movement and rotation.

circumference = π ⋅ track width

distance = circumference ⋅ ​(
360
180

)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 179 of 237



Direction LEFTRIGHT
Forward + +
Backward - -
Rotate CW + -
Rotate CCW - +

CodeTrek:

 1  from botcore import *
 2  import math
 3  
 4  # Choose a threshold value midway through the slot range
 5  SLOT_THRESH = 2000
 6  WHEEL_DIA_CM = 6.5
 7  WHEEL_CIRC_CM = math.pi * WHEEL_DIA_CM
 8  COUNTS_PER_REV = 40
 9  TRACK_WIDTH = 11.7
10  TRACK_CIRC_CM = math.pi * TRACK_WIDTH   

11  
12  def drive_counts(n):
13      """Drive forward for n counts"""
14      # Initialize a variable to hold the previous encoder value
15      was_slot = False
16  
17      # Initialize a variable to hold the slot count
18      count = 0
19  
20      while count <= n:
21          val = enc.read(LEFT)
22          is_slot = val > SLOT_THRESH
23  
24          # Print the value only if it has changed
25          if is_slot != was_slot:
26  
27              # Transitioned to/from a slot!
28              count += 1
29              print('Count is ', count)
30  
31              # Remember the previous value processed.
32              was_slot = is_slot
33  
34  def cm_to_counts(cm):
35      return (cm / WHEEL_CIRC_CM) * COUNTS_PER_REV
36  
37  def drive_dist(cm, power_lft, power_rt):
38      """Drive forward 'cm' centimeters at specified motor power"""
39      counts = cm_to_counts(cm)
40      motors.run(LEFT, power_lft)
41      motors.run(RIGHT, power_rt)
42      motors.enable(True)
43      drive_counts(counts)
44      motors.enable(False)
45  
46  def rotate_deg(deg, power):
47      """Rotate +/- degrees at specified power"""  

48      # Get the direction as a signed +1 or -1 factor.
49      direction = deg / abs(deg)  

A couple more constants:

CodeBot's (track width) in centimenters. This is the diameter of the circle those wheels
trace out when your bot rotates.
Pre-calculate the circumference of that circle. You're gonna need it for rotation!

Define a new function that rotates the bot by the given number of degrees
at the given motor power level.

Since you're rotating, both motors will have equal power in opposite directions.
Clockwise is positive (+deg), Counterclockwise is negative (-deg)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 180 of 237



50  
51      # Calculate the distance each wheel must travel.
52      dist = TRACK_CIRC_CM * deg / 360  

53  
54      # Move out! Positive direction means clockwise.
55      drive_dist(dist, power * direction, -power * direction)  

56  
57  
58  # Turn 90 degrees, then drive forward to the checkpoint
59  # TODO  

Hint:

Expect Variations in Rotation
You may have to try a few times to get the rotation angle just as you need it.

The motors have a small and variable delay turning on and off.

The wheel encoders won't always start with the same rotation.

Goal:

Center-up behind the line
Rotate and Drive to Checkpoint 1 midway between the free throw line (where you start) and the perimeter of the free throw
circle (radius = 140cm).

Stop your bot exactly 70cm from the line.

Tools Found: Motors, Constants, Functions

Solution:

You need a "direction" sign to multiply by the motor speeds.

A good way to get the sign of a number is to divide it by the absolute value of itself.

Consider: 

But: 

​ = +1N
N

​ = ±1∣N ∣
N

What fraction the track tircumference will your wheels travel?

All the way would be 360°/360°
Half way would be  180°/360°

You get the idea...

You have your distance!

Now feed it to your trusty drive_dist() function.

Notice how the direction works? When it's negative it flips the sign
of each motor power, reversing your rotation.

Your Turn
Call some functions!

Get thee to a Checkpoint!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 181 of 237



 1  from botcore import *
 2  import math
 3  
 4  # Choose a threshold value midway through the slot range
 5  SLOT_THRESH = 2000
 6  WHEEL_DIA_CM = 6.5
 7  WHEEL_CIRC_CM = math.pi * WHEEL_DIA_CM
 8  COUNTS_PER_REV = 40
 9  TRACK_WIDTH = 11.7
10  TRACK_CIRC_CM = math.pi * TRACK_WIDTH
11  
12  was_slot = False
13  
14  def drive_counts(n):
15      """Drive forward for n counts"""
16      # Initialize a variable to hold the previous encoder value
17      # was_slot = False
18      global was_slot
19  
20      # Initialize a variable to hold the slot count
21      count = 0
22  
23      while count <= n:
24          val = enc.read(LEFT)
25          is_slot = val > SLOT_THRESH
26  
27          # Print the value only if it has changed
28          if is_slot != was_slot:
29  
30              # Transitioned to/from a slot!
31              count += 1
32              print('Count is ', count)
33  
34              # Remember the previous value processed.
35              was_slot = is_slot
36  
37  def cm_to_counts(cm):
38      return (cm / WHEEL_CIRC_CM) * COUNTS_PER_REV
39  
40  def drive_dist(cm, power_lft, power_rt):
41      """Drive forward 'cm' centimeters at specified motor power"""
42      counts = cm_to_counts(cm)
43      motors.run(LEFT, power_lft)
44      motors.run(RIGHT, power_rt)
45      motors.enable(True)
46      drive_counts(counts)
47      motors.enable(False)
48  
49  def rotate_deg(deg, power):
50      """Rotate +/- degrees at specified power"""
51      # Get the direction as a signed +1 or -1 factor.
52      direction = deg / abs(deg)
53  
54      # Calculate the distance each wheel must travel.
55      dist = TRACK_CIRC_CM * deg / 360
56  
57      # Move out! Positive direction means clockwise.
58      drive_dist(dist, power * direction, -power * direction)
59  
60  
61  # Drive N cm forward
62  rotate_deg(90, 10)
63  drive_dist(70, 30, 30)
64  

Objective 10 - The Need for Speed

Get your 'bot Up to Speed!

Now that you can measure distance, the next step is to measure your speed.

What's CodeBot's top speed?

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 182 of 237



...would that be in: Miles per Hour?, Kilometers per Hour?, Feet per Second?,
Centimeters per Second?
Actually all of those are valid units of speed.
(but go with Centimeters per Second for this Mission.)

Replacing the word "per" with division shows you the equation for speed:

You've got the distance part covered with the code you just finished.

Now you just have to keep track of time as your 'bot moves!

Just in Time

You've been using Python's time module to access the sleep() function. But it has much more to offer!

Your while loop is calling enc.read(LEFT) very rapidly, every time through the loop to track count.
Is there a way to quickly check how much time has elapsed also?
Yes! Check out the ticks_ms() function in the time module.
Use it to capture the current time-tick count in milliseconds.

Ex: - measure milliseconds between t_start and t_stop.

import time

t_start = time.ticks_ms()
# Do some stuff that takes time...
t_stop = time.ticks_ms()

t_diff = t_stop - t_start
print("That took ", t_diff, " milliseconds!")

CodeTrek:

 1  from botcore import *
 2  import math
 3  from time import ticks_ms
 4  
 5  # Choose a threshold value midway through the slot range
 6  SLOT_THRESH = 2000
 7  WHEEL_DIA_CM = 6.5
 8  WHEEL_CIRC_CM = math.pi * WHEEL_DIA_CM
 9  COUNTS_PER_REV = 40
10  TRACK_WIDTH = 11.7
11  TRACK_CIRC_CM = math.pi * TRACK_WIDTH
12  POLL_MS = 100   

13  
14  def drive_counts(n):
15      """Drive forward for n counts"""
16      # Initialize a variable to hold the previous encoder value
17      was_slot = False
18  
19      # Initialize a variable to hold the slot count
20      count = 0
21  
22      # Initialize variables for polling the speed
23      count_poll = 0  # count at previous poll time
24      t_poll = ticks_ms() + POLL_MS  # Next poll time 

speed = ​

time
distance

The "polling interval" in milliseconds.

This controls how often you will calculate and display the speed.
10 times per second should work great. That's 100ms.

While you're driving...

Keep track of the next time you need to "poll" the speed.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 183 of 237



25  
26      while count <= n:
27          val = enc.read(LEFT)
28          is_slot = val > SLOT_THRESH
29  
30          # Print the value only if it has changed
31          if is_slot != was_slot:
32  
33              # Transitioned to/from a slot!
34              count += 1
35              # print('Count is ', count)  

36  
37              # Remember the previous value processed.
38              was_slot = is_slot
39  
40          # Periodically poll speed
41          t_now = ticks_ms()
42          if t_now > t_poll:
43              # Schedule the next poll
44              t_poll = t_now + POLL_MS  

45  
46              # Calculate speed in cm / sec
47              dist_cm = counts_to_cm(count - count_poll)
48              tm_sec = POLL_MS / 1000
49              speed = # TODO
50              print(f'speed = {speed} cm/s')  

51  
52              # Remember count to calculate distance in next poll
53              count_poll = count
54  
55  
56  
57  def cm_to_counts(cm):
58      return (cm / WHEEL_CIRC_CM) * COUNTS_PER_REV
59  
60  def counts_to_cm(counts):
61      return counts * WHEEL_CIRC_CM / COUNTS_PER_REV  

62  
63  def drive_dist(cm, power_lft, power_rt):

You'll also need to calculate how far the bot has traveled since the last poll,
so saving the previous count would be good.

Comment-out this line

De-clutter your console output!

Is it POLL time?

See how the code inside this if block runs once every POLL_MS?

Each time around the while loop you check the time...
When t_poll finally arrives, drop into the if block!
Then schedule the next poll and do any other periodic tasks.

Calculate and display the speed in centimeters per second.

Remember the equation for speed?
The value printed needs to be an integer.
The built-in round() function will take care of that.
Use an f-string to format your print() output this time!

To display the speed, you need to convert counts to centimeters.

This is the inverse of the cm_to_counts() function you wrote above!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 184 of 237



64      """Drive forward 'cm' centimeters at specified motor power"""
65      counts = cm_to_counts(cm)
66      motors.run(LEFT, power_lft)
67      motors.run(RIGHT, power_rt)
68      motors.enable(True)
69      drive_counts(counts)
70      motors.enable(False)
71  
72  def rotate_deg(deg, power):
73      """Rotate +/- degrees at specified power"""
74      # Get the direction as a signed +1 or -1 factor.
75      direction = deg / abs(deg)
76  
77      # Calculate the distance each wheel must travel.
78      dist = TRACK_CIRC_CM * deg / 360
79  
80      # Move out! Positive direction means clockwise.
81      drive_dist(dist, power * direction, -power * direction)
82  
83  # Drive forward, then change speeds and go again
84  drive_dist(??)
85  drive_dist(??)   

Hints:

Changing Speeds

The motor power level determines your speed on flat ground.

Drive for some distance at one power level.

Increase the power, and drive a bit farther.

Printing an Integer Value

One way to do this is to convert the number to an integer before converting it to a string.

Use the round() built-in for this.

Goals:

Calculate Speed

Use the ticks_ms() function from the time module.

Console Speedometer!

Display your speed.

print() to the console speed = N cm/s

The N above should be an integer speed value for your current speed in centimeters per second.

Check and print speed every 100ms

Drive at two different speeds

I want to see two speeds different by at least 10 cm/s in your output.

Spend a minimum of 2 seconds at each speed

Use an f-string to format your output

Mastering this powerful string formatting technique will make it easy for you to create clear and concise output messages.

A Two-Part Journey

Check the goals and be sure to drive far enough and with enough difference in speed to accomplish your mission!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 185 of 237



Tools Found: Time Module, Print Function, int, String Formatting, str, Comments, Built-In Functions, Functions

Solution:

 1  from botcore import *
 2  import math
 3  from time import ticks_ms
 4  
 5  # Choose a threshold value midway through the slot range
 6  SLOT_THRESH = 2000
 7  WHEEL_DIA_CM = 6.5
 8  WHEEL_CIRC_CM = math.pi * WHEEL_DIA_CM
 9  COUNTS_PER_REV = 40
10  TRACK_WIDTH = 11.7
11  TRACK_CIRC_CM = math.pi * TRACK_WIDTH
12  POLL_MS = 100
13  
14  was_slot = False
15  
16  def drive_counts(n):
17      """Drive forward for n counts"""
18      # Initialize a variable to hold the previous encoder value
19      # was_slot = False
20      global was_slot
21  
22      # Initialize a variable to hold the slot count
23      count = 0
24      count_poll = 0
25  
26      t_poll = ticks_ms() + POLL_MS
27  
28      while count <= n:
29          val = enc.read(LEFT)
30          is_slot = val > SLOT_THRESH
31  
32          # Print the value only if it has changed
33          if is_slot != was_slot:
34  
35              # Transitioned to/from a slot!
36              count += 1
37              # print('Count is ', count)
38  
39              # Remember the previous value processed.
40              was_slot = is_slot
41  
42          # Periodically poll speed
43          t_now = ticks_ms()
44          if t_now > t_poll:
45              # Calculate speed in cm / sec
46              speed = counts_to_cm(count - count_poll) / (POLL_MS / 1000)
47              print(f'speed = {round(speed)} cm/s')
48  
49              # Remember count, and schedule next poll
50              count_poll = count            
51              t_poll = t_now + POLL_MS
52  
53  
54  def cm_to_counts(cm):
55      return (cm / WHEEL_CIRC_CM) * COUNTS_PER_REV
56  
57  def counts_to_cm(counts):
58      return counts * WHEEL_CIRC_CM / COUNTS_PER_REV
59  
60  def drive_dist(cm, power_lft, power_rt):
61      """Drive forward 'cm' centimeters at specified motor power"""
62      counts = cm_to_counts(cm)
63      motors.run(LEFT, power_lft)
64      motors.run(RIGHT, power_rt)
65      motors.enable(True)
66      drive_counts(counts)
67      motors.enable(False)
68  

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 186 of 237



69  def rotate_deg(deg, power):
70      """Rotate +/- degrees at specified power"""
71      # Get the direction as a signed +1 or -1 factor.
72      direction = deg / abs(deg)
73  
74      # Calculate the distance each wheel must travel.
75      dist = TRACK_CIRC_CM * deg / 360
76  
77      # Move out! Positive direction means clockwise.
78      drive_dist(dist, power * direction, -power * direction)
79  
80  
81  # Drive forward, then change speeds and go again
82  drive_dist(20, 10, 10)
83  drive_dist(40, 50, 50)
84  

Quiz 3 - Speed Round

Question 1: Which two of the following are True?

done abs(-5) == 5

done abs(-17) / -17 == -1

close abs(5) == -5

close abs(1 / 2) == 0

Question 2: About how much time passes between printing "Begin" and "End" when the code below is run?

tm = ticks_ms() + 1000

print("Begin")
while True:
    if ticks_ms() > tm:
        break

print("End")

done 1 second

close 1 minute

close 1 millisecond

close 100 milliseconds

Question 3: Which of the following is output by this code snippet?

import math
print(f'{math.pi:.3f}')

done 3.142

close 3.14

close 03.14

Question 4: Which of the following is output by this code snippet?

num = 10
print(f'0b{num:08b}')

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 187 of 237



done 0b00001010

close 0b1010

close 0b00000010

close 18

Objective 11 - Speed Trap

Cruise Control

You've used the wheel encoders to measure distance and angle of rotation.

But what if you want your bot to drive at a particular speed?

So far your speed has just been based on the motor power level.
But that's not very accurate! Different surfaces, inclines, and battery power will all
affect your speed even with a constant motor power level.

Wouldn't it be nice to tell your 'bot the speed you want to go and have it automatically
maintain that speed, like the cruise control in a car?

Systems Engineering

Deep breath... bear with me here! The diagrams below show the drive control for your CodeBot. Take a minute to see how this helps
you craft the code for cruise control.

Closed Loop Control automates control of a System by sensing the Output state
and comparing it to the desired state (Input). A Feedback loop continuously adjusts
the System to keep the error (difference between Input and Output) close to zero.

Input → Desired Speed
System → Motors
Output → Actual Speed
Feedback → Wheel Encoders
Disturbance → Friction, terrain, etc.

Your Code is "Open Loop!"

Right now you're displaying the speed, but your code is not using it to adjust the
power.

Any "Disturbance" that happens will affect the Output (speed).
And your Input in raw % power is only loosely related to the Output speed.

CodeBot Cruise Control

This is the control system you'll be coding.

You're already sensing the `cur_speed`.
For Input how about: drive(distance, speed) ?
Your Feedback loop will calculate the error:

Output and Input are speeds.
 is a constant you choose for the amount of Proportional feedback.

Feedback with Code

Your feedback loop needs to measure the error between Input and Output, and feed it back to the System.

Input → target_speed.
Output → cur_speed.
System → power to the motors.

Ex: Code to apply feedback to the motors.

err = (Input − Output) ⋅K ​p

K ​p

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 188 of 237



# Calculate: err = (Input - Output)
err = target_speed - cur_speed

# Apply feedback to System (adjust motor power)
power += err * Kp
motors.run(LEFT, power)
motors.run(RIGHT, power)

Consider how the code above works when your 'bot is going slower than the desired target_speed:

target_speed > cur_speed so err will be positive.
Which means power to the motors will increase!

Ready to Code this?

Relax! You can implement this with just a few more lines of Python code!

First, use the File → Save As menu to save your code to a new file called "enc_speed.py"

CodeTrek:

 1  from botcore import *
 2  import math
 3  from time import ticks_ms
 4  
 5  # Choose a threshold value midway through the slot range
 6  SLOT_THRESH = 2000
 7  WHEEL_DIA_CM = 6.5
 8  WHEEL_CIRC_CM = math.pi * WHEEL_DIA_CM
 9  COUNTS_PER_REV = 40
10  TRACK_WIDTH = 11.7
11  TRACK_CIRC_CM = math.pi * TRACK_WIDTH
12  POLL_MS = 200
13  Kp = 0.3  # Proportional feedback: Adjust this. 

14  
15  def drive_speed(dist, target_speed):  

16      """Drive the given dist (cm) at target_speed (cm/s)"""
17      # Initialize a variable to hold the previous encoder value
18      was_slot = False
19  
20      # Initialize a variable to hold the slot count
21      count = 0
22  
23      # Initialize variables for polling the speed
24      count_poll = 0  # count at previous poll time
25      t_poll = ticks_ms() + POLL_MS  # Next poll time
26  
27      # Initialize a variable to hold the current motor power
28      power = 0  

Another constant

This controls the amount of proportional feedback.

Higher values will make the motors respond more strongly to speed errors.
Too high and your speed will be janky!

Lower values smooth out the speed changes, but it may take longer to come up to speed.

Replace your drive_counts() with this!

Re-write your old function as shown here.

Check out these new parameters for real  distance and speed.

This time your code calculates the motor power dynamically!

Start with zero power

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 189 of 237



29      
30      # Convert distance to "counts"
31      n = cm_to_counts(dist)  

32  
33      motors.enable(True)  

34  
35      while count <= n:
36          # Check Encoder
37          val = enc.read(LEFT)
38          is_slot = val > SLOT_THRESH
39          if is_slot != was_slot:
40              # Transitioned to/from a slot!
41              count += 1
42  
43              # Remember the previous value processed.
44              was_slot = is_slot
45  
46          # Check Speed
47          t_now = ticks_ms()
48          if t_now > t_poll:
49              # Schedule the next poll
50              t_poll = t_now + POLL_MS
51  
52              # Calculate speed in cm / sec
53              dist_cm = counts_to_cm(count - count_poll)
54              count_poll = count
55              tm_sec = POLL_MS / 1000
56              cur_speed = dist_cm / tm_sec  

57  
58              # Feedback Loop! Adjust power in proportion to error.
59              err = target_speed - cur_speed
60              power += err * Kp
61              motors.run(LEFT, power)
62              motors.run(RIGHT, power)  

63  
64              # Log stats to console
65              # TODO: Better number formatting
66              print(f'speed={cur_speed}, power={power}%') 

67  

Convert the given distance into wheel encoder counts

Your drive_speed() function takes full control of the motors.

Be sure to enable and disable them.

Calculate the speed every POLL.

No need to round() it. More precision is better for controlling the motors, right?

Your Control System

Just like those Systems Engineering diagrams!

You're controlling the power based on the speed.
That's closed-loop control dude!

These numbers are floats.

They can get pretty long on the console.
Maybe use some string formatting to clean these up!?

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 190 of 237



68      motors.enable(False)
69  
70  
71  def cm_to_counts(cm):
72      return (cm / WHEEL_CIRC_CM) * COUNTS_PER_REV
73  
74  def counts_to_cm(counts):
75      return counts * WHEEL_CIRC_CM / COUNTS_PER_REV
76  
77  # NOTE: Deleted drive_dist() and rotate_deg() functions!
78  
79  # Take a trip!
80  drive_speed(160, 10)  

Hint:

Formatting your Console Output

To print a float with just a single digit after the decimal point, use the {:.1f} format specifier as described in
string formatting.

Ex:

val = 7.654321
print(f'Number = {val:.1f}')

The above prints Number = 7.7

Goals:

Maintain a constant speed of 25 cm/sec through both Checkpoints

Display your speed and motor power on the console as you go.

Format each float value with just a single digit after the decimal point, so I can read them easily.

See the Hints if needed for this.

Tools Found: Wheel Encoders, Motors, Constants, float, Functions, Parameters, Arguments, and Returns, Print Function, String Formatting

Solution:

 1  from botcore import *
 2  import math
 3  from time import ticks_ms
 4  
 5  # Choose a threshold value midway through the slot range
 6  SLOT_THRESH = 2000
 7  WHEEL_DIA_CM = 6.5
 8  WHEEL_CIRC_CM = math.pi * WHEEL_DIA_CM
 9  COUNTS_PER_REV = 40
10  TRACK_WIDTH = 11.7
11  TRACK_CIRC_CM = math.pi * TRACK_WIDTH
12  POLL_MS = 200
13  Kp = 0.4  # Proportional feedback: Adjust this. #@1
14  
15  def drive_speed(dist, target_speed):  #@2
16      """Drive the given dist (cm) at target_speed (cm/s)"""
17      # Initialize a variable to hold the previous encoder value
18      was_slot = False
19  

Notice some code was removed above. Keep it tidy :-)

Fancy a drive?

Enter the speed trap if you dare!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 191 of 237



20      # Initialize a variable to hold the slot count
21      count = 0
22  
23      # Initialize variables for polling the speed
24      count_poll = 0  # count at previous poll time
25      t_poll = ticks_ms() + POLL_MS  # Next poll time
26  
27      # Initialize a variable to hold the current motor power
28      power = 0  #@3
29      
30      # Convert distance to "counts"
31      n = cm_to_counts(dist)  #@4
32  
33      motors.enable(True)  #@5
34  
35      while count <= n:
36          # Check Encoder
37          val = enc.read(LEFT)
38          is_slot = val > SLOT_THRESH
39          if is_slot != was_slot:
40              # Transitioned to/from a slot!
41              count += 1
42  
43              # Remember the previous value processed.
44              was_slot = is_slot
45  
46          # Check Speed
47          t_now = ticks_ms()
48          if t_now > t_poll:
49              # Schedule the next poll
50              t_poll = t_now + POLL_MS
51  
52              # Calculate speed in cm / sec
53              dist_cm = counts_to_cm(count - count_poll)
54              count_poll = count
55              tm_sec = POLL_MS / 1000
56              cur_speed = dist_cm / tm_sec  #@6
57  
58              # Feedback Loop! Adjust power in proportion to error.
59              err = target_speed - cur_speed
60              power += err * Kp
61              motors.run(LEFT, power)
62              motors.run(RIGHT, power)  #@7
63  
64              # Log stats to console
65              print(f'speed={cur_speed:.1f}, power={power:.1f}%')
66  
67      motors.enable(False)
68  
69  
70  def cm_to_counts(cm):
71      return (cm / WHEEL_CIRC_CM) * COUNTS_PER_REV
72  
73  def counts_to_cm(counts):
74      return counts * WHEEL_CIRC_CM / COUNTS_PER_REV
75  
76  # NOTE: Deleted drive_dist() and rotate_deg() functions!
77  
78  # Take a trip!
79  drive_speed(160, 25)  #@9

Objective 12 - Arc de CodeBot

A Triumphant Finish!
This final Objective will put your Python coding skills and your knowledge of the wheel encoders to the test!

You can DO this!

All Wheel Drive

So far you've gotten a lot done with just the LEFT side encoder.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 192 of 237



But what if you want to drive in a circle?
Or a curvy line, or to drive straight over uneven surfaces where the
wheels need independent control.

Making an Arc

An "arc" is just a portion of the perimeter of a circle.

Kind of like the crust of a pizza slice!
A 90° arc would be 1/4 of the pie.
...and 360° would go around the whole pizza!

Around the Pizza

Say you wanted to drive CodeBot around the pizza shown above.

Notice the radius of the two circles (purple and green) differs by ,
CodeBot's Track Width.
The RIGHT wheel would need to go farther than the LEFT wheel.
Right?

The ratio of speeds is the same as the ratio of the perimeters of the purple
and green circles.

So if you can drive with different LEFT/RIGHT wheel speeds, you can precisely circumnavigate the pizza!

Refactor Your Code!

You need to modify your drive_speed() function to accept speed_left and speed_right.

That means you'll be checking both wheel encoders as you drive.
And that's twice as many state variables tracking slot, count, speed, etc.

Relax, the CodeTrek will guide you in this refactoring work.

CodeTrek:

  1  from botcore import *
  2  import math
  3  from time import ticks_ms
  4  
  5  # Choose a threshold value midway through the slot range
  6  SLOT_THRESH = 2000
  7  WHEEL_DIA_CM = 6.5
  8  WHEEL_CIRC_CM = math.pi * WHEEL_DIA_CM
  9  COUNTS_PER_REV = 40
 10  TRACK_WIDTH = 11.7
 11  TRACK_CIRC_CM = math.pi * TRACK_WIDTH
 12  POLL_MS = 200
 13  Kp = 0.1
 14  
 15  def drive_speed(dist, speed_left, speed_right):
 16      """Drive the given dist (cm) at target speeds (cm/s)"""  

 17      # Init global state variables
 18      init_drive_state()  

T

​ = ​ = ​

DIST ​right

DIST ​lef t

⋅ (r + T )2π
⋅ r2π

r + T
r

Refactoring Begins!

Re-work your drive_speed() function.

A control loop for both LEFT and RIGHT motors.

First, factor-out most of your state variables.

The init_drive_state() function will handle creating the global variables you need.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 193 of 237



 19  
 20      # Set global target_speed
 21      target_speed[LEFT] = speed_left
 22      target_speed[RIGHT] = speed_right  

 23  
 24      t_poll = ticks_ms() + POLL_MS
 25  
 26      # Convert distance to "counts"
 27      n = cm_to_counts(dist)
 28  
 29      motors.enable(True)
 30  
 31      while count[LEFT] <= n and count[RIGHT] <= n:
 32          # Check Encoder
 33          update_slot_count(LEFT)
 34          update_slot_count(RIGHT)  

 35  
 36          # Periodically poll speed and update motor power
 37          t_now = ticks_ms()
 38          if t_now > t_poll:
 39              t_poll = t_now + POLL_MS
 40  
 41              # Update speed and power
 42              update_speed_power(LEFT)
 43              update_speed_power(RIGHT)  

 44  
 45      motors.enable(False)
 46  
 47  def init_drive_state():
 48      """Initialize global state for driving with encoders"""
 49      global was_slot, count, count_poll, speed, target_speed, power  

 50  
 51      was_slot = [False, False]
 52      count = [0, 0]             # Current encoder counts
 53      count_poll = [0, 0]
 54      speed = [0, 0]             # Current speed
 55      target_speed = [0, 0]      # Desired speed
 56      power = [0, 0]             # Current motor power levels
 57  

This allows other code you factor-out to access the state.

Accessing the global state:

Now that you've called init_drive_state() you can access the variables it created.
Set the target_speed for both encoders.

Your while loop has 2 parts:

1. Read the encoders and update the slot count.
2. Poll the speed and update the motor power.

Factor-out both of those parts into their own functions!

The first part is update_slot_count()

The 2nd part of your while loop happens every POLL interval.

Move that code to the update_speed_power() function.

Your First Factored Function

It creates several lists that track state: [LEFT, RIGHT]

Remember botcore defines LEFT = 0 and RIGHT = 1.
Initialize all the state you need to manage distance and speed.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 194 of 237



 58  def update_slot_count(side):
 59      """Check Encoder, update global count[] and was_slot[] lists"""
 60      val = enc.read(side)
 61      is_slot = val > SLOT_THRESH
 62      if is_slot != was_slot[side]:
 63          # Transitioned to/from a slot!
 64          count[side] += 1  

 65  
 66          # Remember the previous value processed.
 67          was_slot[side] = is_slot
 68  
 69  def update_speed_power(side):
 70      """This should be called every POLL_MS to update speed[] based on count[] and count_poll[].
 71         Also updates power[] based on target_speed[] vs speed[], and sets motor accordingly.
 72      """  

 73      # Update speed
 74      dist_cm = counts_to_cm(count[side] - count_poll[side])
 75      tm_sec = POLL_MS / 1000
 76      speed[side] = dist_cm / tm_sec
 77      count_poll[side] = count[side]
 78  
 79      speed_sign = target_speed[side] / abs(target_speed[side])
 80  
 81      # Adjust power
 82      err = abs(target_speed[side]) - speed[side]
 83      power[side] = power[side] + err * Kp
 84      motors.run(side, power[side] * speed_sign)
 85  
 86  def cm_to_counts(cm):
 87      return (cm / WHEEL_CIRC_CM) * COUNTS_PER_REV
 88  
 89  def counts_to_cm(counts):
 90      return counts * WHEEL_CIRC_CM / COUNTS_PER_REV
 91  
 92  def drive_arc(dist, radius, speed):
 93      """Drive in a counterclockwise arc with given radius"""
 94      ratio = radius / (radius + TRACK_WIDTH)
 95      drive_speed(dist, ratio * speed, speed)  

 96  
 97  
 98  FREE_THROW_RADIUS = 145  # cm  (center of circle)
 99  PERIMETER_DISTANCE = 2 * math.pi * (FREE_THROW_RADIUS + 10)  # cm  
#@10
100  
101  drive_arc(PERIMETER_DISTANCE, FREE_THROW_RADIUS, 25)  
#@11

Goal:

This code should look familiar!

Basically it's the same code that was in your while loop to update the slot count.
Now it uses the global state, and handles both sides.
Notice how the augmented assignment saves even more typing here!

This is factored-out from the POLL section of your while loop.

These speed and error feedback calculations should look familiar.
Notice how this function only deals with one motor at a time.
Also, some code has been added to deal with negative speeds.

So this time, you're "Reverse-Ready!"

This function implements the arc calculation.

To keep it simple it only handles counterclockwise arcs.
Later you can adapt it to go clockwise too!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 195 of 237



The Free Throw Circle is Your Pizza!

Make it all the way around the free-throw circle, hitting each Checkpoint

The weightlifting team has added some dumbbells to increase the challenge ㋡

The radius of the free-throw circle is 145cm.

Tools Found: Wheel Encoders, Refactoring, undefined, Variables, Locals and Globals, list, State, Functions, Assignment, Constants

Solution:

  1  from botcore import *
  2  import math
  3  from time import ticks_ms
  4  
  5  # Choose a threshold value midway through the slot range
  6  SLOT_THRESH = 2000
  7  WHEEL_DIA_CM = 6.5
  8  WHEEL_CIRC_CM = math.pi * WHEEL_DIA_CM
  9  COUNTS_PER_REV = 40
 10  TRACK_WIDTH = 11.7
 11  TRACK_CIRC_CM = math.pi * TRACK_WIDTH
 12  POLL_MS = 200
 13  Kp = 0.1
 14  
 15  def drive_speed(dist, speed_left, speed_right):
 16      """Drive the given dist (cm) at target speeds (cm/s)"""  #@1
 17      # Init global state variables
 18      init_drive_state()  #@2
 19  
 20      # Set global target_speed
 21      target_speed[LEFT] = speed_left
 22      target_speed[RIGHT] = speed_right  #@3
 23  
 24      t_poll = ticks_ms() + POLL_MS
 25  
 26      # Convert distance to "counts"
 27      n = cm_to_counts(dist)
 28  
 29      motors.enable(True)
 30  
 31      while count[LEFT] <= n and count[RIGHT] <= n:
 32          # Check Encoder
 33          update_slot_count(LEFT)
 34          update_slot_count(RIGHT)  #@4
 35  
 36          # Periodically poll speed and update motor power
 37          t_now = ticks_ms()
 38          if t_now > t_poll:
 39              t_poll = t_now + POLL_MS
 40  
 41              # Update speed and power
 42              update_speed_power(LEFT)
 43              update_speed_power(RIGHT)  #@5
 44  
 45      motors.enable(False)
 46  
 47  def init_drive_state():
 48      """Initialize global state for driving with encoders"""
 49      global was_slot, count, count_poll, speed, target_speed, power  #@6
 50  
 51      was_slot = [False, False]
 52      count = [0, 0]             # Current encoder counts
 53      count_poll = [0, 0]
 54      speed = [0, 0]             # Current speed
 55      target_speed = [0, 0]      # Desired speed
 56      power = [0, 0]             # Current motor power levels
 57  
 58  def update_slot_count(side):
 59      """Check Encoder, update global count[] and was_slot[] lists"""  #@7

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 196 of 237



 60      val = enc.read(side)
 61      is_slot = val > SLOT_THRESH
 62      if is_slot != was_slot[side]:
 63          # Transitioned to/from a slot!
 64          count[side] = count[side] + 1
 65  
 66          # Remember the previous value processed.
 67          was_slot[side] = is_slot
 68  
 69  def update_speed_power(side):
 70      """This should be called every POLL_MS to update speed[] based on count[] and count_poll[].
 71         Also updates power[] based on target_speed[] vs speed[], and sets motor accordingly.
 72      """  #@8
 73      # Update speed
 74      dist_cm = counts_to_cm(count[side] - count_poll[side])
 75      tm_sec = POLL_MS / 1000
 76      speed[side] = dist_cm / tm_sec
 77      count_poll[side] = count[side]
 78  
 79      speed_sign = target_speed[side] / abs(target_speed[side])
 80  
 81      # Adjust power
 82      err = abs(target_speed[side]) - speed[side]
 83      power[side] = power[side] + err * Kp
 84      motors.run(side, power[side] * speed_sign)
 85  
 86  def cm_to_counts(cm):
 87      return (cm / WHEEL_CIRC_CM) * COUNTS_PER_REV
 88  
 89  def counts_to_cm(counts):
 90      return counts * WHEEL_CIRC_CM / COUNTS_PER_REV
 91  
 92  def drive_arc(dist, radius, speed):
 93      """Drive in a counterclockwise arc with given radius"""
 94      ratio = radius / (radius + TRACK_WIDTH)
 95      drive_speed(dist, ratio * speed, speed)  #@9
 96  
 97  FREE_THROW_RADIUS = 145  # cm  (center of circle)
 98  OUTSIDE_DISTANCE = 2 * math.pi * (FREE_THROW_RADIUS + 15)  # cm
 99  
100  drive_arc(OUTSIDE_DISTANCE, FREE_THROW_RADIUS, 25)  #@10

Mission 14 - Music Box
Turn the CodeBot into a jukebox and learn about Python's file operations!

Objective 1 - Tune That Dial

Play some notes!!
The CodeBot speaker can play simple audio frequencies.

These can be strung together to make music...

The table below shows the frequencies for some common musical notes.

      Note         Frequency (Hz)           Note         Frequency (Hz)           Note         Frequency (Hz)  
C5 523 C6 1047 C7 2093
D5 587 D6 1175 D7 2349
E5 659 E6 1319 E7 2637
F5 698 F6 1397 F7 2794
G5 784 G6 1568 G7 3136
A5 880 A6 1760 A7 3520
B5 988 B6 1976 B7 3951

Your bot can play any of these notes. Why don't you try a few!?

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 197 of 237



CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  freqs = {
 5      "C": 1047,
 6      "D": 1175,
 7      "E": 1319,
 8      "F": 1397,
 9      "G": 1568,
10      "A": 1760
11  }

12  
13  freq = freqs["G"]

14  spkr.pitch(freq)

15  sleep(1.0)
16  # TODO: Play an E6
17  sleep(1.0)
18  # TODO: Play an A6
19  sleep(1.0)
20  spkr.off()
21  

Hint:

Scientific Pitch Notation
Writing musical notes in the form C5 is called Scientific Pitch Notation.

The letter is the note, and the number is the octave. So for example, C4 is middle C on the piano.

Goals:

Play a G6 (1568 Hz) on the spkr

Play an E6 (1319 Hz) on the spkr

Here is a dictionary of notes that you can use throughout the lesson.

To get the frequency of a G6 you would use:

freq = freqs["G"]

Get the frequency of a G6.

Play the G6 on your CodeBot speaker!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 198 of 237

https://en.wikipedia.org/wiki/Scientific_pitch_notation


Play an A6 (1760 Hz) on the spkr

Tools Found: Speaker, dictionary

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  freqs = {
 5      "C": 1047,
 6      "D": 1175,
 7      "E": 1319,
 8      "F": 1397,
 9      "G": 1568,
10      "A": 1760
11  }
12  
13  freq = freqs["G"]
14  spkr.pitch(freq)
15  sleep(1.0)
16  freq = freqs["E"]
17  spkr.pitch(freq)
18  sleep(1.0)
19  freq = freqs["A"]
20  spkr.pitch(freq)
21  sleep(1.0)
22  spkr.off()
23  

Objective 2 - Twinkle, Twinkle

Time for your first composition!
Here is a list of notes that make up the song Twinkle, Twinkle, Little Star

C6, C6, G6, G6, A6, A6, G6, F6, F6, E6, E6, D6, D6, C6

Put your notes in an actual Python list and use a for loop to play them:

notes = ["C", "C", "G", "G", ...]
for note in notes:
    # play note

Remember the Metronome Mission?

You can use tempo and beat_duration that you've already learned to control the timing.

Start with these values:

tempo = 100
beat_duration = 0.3

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds per beat 

 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,

Define the tempo and beat_duration variables.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 199 of 237



10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  notes = ["C", "C", "G"] # TODO: Finish this list

17  
18  # Loop through each note in notes
19  # TODO: Insert a for loop

20      # Lookup the frequency of this note
21      f = # TODO: Get the frequency for the note

22      
23      # Play the note for the beat_duration
24      spkr.pitch(f)
25      sleep(beat_duration)
26  
27      # Pause for articulation
28      spkr.off()
29      sleep(0.05)

Goal:

Play the following notes in order:

C, C, G, G, A, A, G, F, F, E, E, D, D, C

Be sure to turn the spkr.off() between notes!!

Tools Found: list, Loops, dictionary

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  notes = ["C", "C", "G", "G", "A", "A", "G", "F", "F", "E", "E", "D", "D", "C"]
17  
18  # loop through each note in notes

Complete this list of notes.

It should play the song Twinkle, Twinkle, Little Star

Add a for loop to get each note from the notes list.

Lookup the given note in your dictionary to find its frequency.

Pause to give a little space between notes.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 200 of 237



19  for note in notes:
20      freq = freqs[note]
21      # play the note for the beat_duration
22      spkr.pitch(freq)
23      sleep(beat_duration)
24  
25      # pause for articulation
26      spkr.off()
27      sleep(0.05)

Objective 3 - Jingle Bells

Time to get in the Holiday Spirit!!
Here are the notes for the song Jingle Bells:

E6, E6, E6, E6, E6, E6, E6, G6, C6, D6, E6 F6, F6, F6, F6, F6, E6, E6, E6, E6, D6, D6, E6, D6, G6

This time put the notes in a string separated by spaces like this:

text = "E E E E E E E G C D"

Then you can use the Python split function to turn them into a notes list.

split() turns a string into a list.

Every element in your list will be a word in the string.
Words are separated by spaces.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  text = "E E E E E E" # TODO: Finish this string

17  
18  notes = # TODO: Use the split function here

19  
20  # Loop through each note in notes
21  for note in notes:
22      # Lookup the frequency of this note
23      f = freqs[note]
24  
25      # Play the note for the beat_duration
26      spkr.pitch(f)
27      sleep(beat_duration)
28  
29      # Pause for articulation

Add the rest of the notes to Jingle Bells here.

Put a space between each note for split()

Use the split() function on text to get a list of notes.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 201 of 237



snippet_folder

30      spkr.off()
31      sleep(0.05)

Goals:

Use text.split() to create a Python list named notes.

Play the following notes in order:

E, E, E, E, E, E, E, G, C, D, E, F, F, F, F, F, E, E, E, E, D, D, E, D, G

Be sure to turn the spkr.off() between notes!!

Tools Found: str, list

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  text = "E E E E E E E G C D E F F F F F E E E E D D E D G"
17  
18  notes = text.split()
19  
20  # loop through each note in notes
21  for note in notes:
22      freq = freqs[note]
23      # play the note for the beat_duration
24      spkr.pitch(freq)
25      sleep(beat_duration)
26  
27      # pause for articulation
28      spkr.off()
29      sleep(0.05)

Objective 4 - File System

Exploring the File System
Your jukebox is going to need lots of songs.

Right now, you just have one song that's baked-into the Python code!
Files let you store data outside of your code.
You have probably downloaded different kinds of files before.

Music, documents, videos,...

The CodeSpace File System is accessed by opening the File menu above the code editor.

Once you are in the File menu, select Browse Files... to see a list of all your files.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 202 of 237



queue_music

Song Files!
I have added a new file for you: old_man_song.txt

Open it up and take a look inside!!

Select old_man_song.txt and click the Open button.

But what's in the file?

It looks like notes separated by spaces...
Hey, it's another song!!

Goal:

Open the old_man_song.txt using the File menu above the code editor.

Tools Found: File System

Solution:

1  # No Code

Objective 5 - This Old Man

Reading the Song File
Open the File for Reading

Your Python code can read from and write to files. But first you need to create a file object using the open() function from Python's
file operations.

open takes two parameters open(file, mode)
file is the filename
mode is explained below

File Modes

Files can be opened in different modes
The open() function defaults to read-only if no mode is given.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 203 of 237



read-only mode is the same as mode = "r"
So the following two lines are equivalent:

f = open("filename")
f = open("filename", "r")

When you are done with a file ALWAYS close it using the close() function.

f.close()

This will make sure any changes your program made to the file are saved, and will allow other programs on your computer to access
the file.

Now open up old_man_song.txt, read() the song, and *play it!

See file operations and the CodeTrek for help on how to read a string from the file.

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  # There is a file called old_man_song.txt in your system
17  f = # TODO: Open the old_man_song.txt for reading

18  
19  # Read all the contents of the file
20  text = # TODO: Read the string from the file

21  
22  f.close()

23  
24  notes = text.split()
25  
26  # Loop through each note in notes
27  for note in notes:
28      # Lookup the frequency of this note
29      f = freqs[note]
30      
31      # Play the note for the beat_duration
32      spkr.pitch(f)
33      sleep(beat_duration)
34  
35      # Pause for articulation
36      spkr.off()
37      sleep(0.05)

You open a file for reading with:

f = open("filename", "r")

To read all the contents of a file use:
contents = f.read()

Always close() your file when you are done using it!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 204 of 237



edit

Goals:

Read the data from a file named old_man_song.txt.

Play the notes from the old_man_song.txt.

Be sure to turn the spkr.off() between notes!!

Tools Found: Files, str

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  # there is a file called old_man_song.txt in your system
17  f = open("old_man_song.txt", "r")
18  
19  # read all the contents of the file
20  text = f.read()
21  
22  f.close()
23  
24  notes = text.split()
25  
26  # loop through each note in notes
27  for note in notes:
28      freq = freqs[note]
29      # play the note for the beat_duration
30      spkr.pitch(freq)
31      sleep(beat_duration)
32  
33      # pause for articulation
34      spkr.off()
35      sleep(0.05)

Objective 6 - Frere Jacques

Writing to a File!
You can open() files in different modes.

Check out the file operations tool for a complete list.
With the "write" modes you can also create new files.

Once you have an open file object you can write a string to it like this:

# Create a new file and put a special message in it.
f = open("my_file.txt", "w")
f.write("Hi, welcome to my file!")
f.close()

IMPORTANT NOTE: After you write to a file you must at some point flush it to guarantee that any "buffered" data is saved to the
filesystem.

There are two ways to flush a file:

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 205 of 237



1. Close the file: f.close(), or
2. Flush the file: f.flush() (when you need to keep it open for more writing...)

This Objective's Goals

You will be creating a file, writing a song to it, reading the data back from the file, and finally playing the song on the speaker. Whew!

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  data = "C D E C C D E C E F G E F G"
17  
18  # Open a new file in write mode
19  # TODO: Open my_song.txt for writing

20  # TODO: Write the data to my_song.txt

21  f.close()

22  
23  # Open your file in read mode
24  f = open("my_song.txt", "r")
25  text = f.read()
26  f.close()
27  
28  notes = text.split()
29  
30  # Loop through each note in notes
31  for note in notes:
32      # Lookup the frequency of this note
33      freq = freqs[note]
34      
35      # Play the note for the beat_duration
36      spkr.pitch(freq)
37      sleep(beat_duration)
38  
39      # Pause for articulation
40      spkr.off()
41      sleep(0.05)

Hint:

If your file is not writing:

Make sure you call f.flush() or f.close()

Open a file as write only with f = open("filename", "w")

Write a string to the file f.write("my string")

You MUST call f.close() or f.flush() to push the file contents to the file system.

It is always good practice to close your files!!!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 206 of 237



This pushes the data to the file system!!

Goals:

Write this string to a new file named my_song.txt: data = "C D E C C D E C E F G E F G"

Open my_song.txt again and read the data back out.

Play the notes from my_song.txt.

Be sure to turn the spkr.off() between notes!!

Tools Found: Files, str

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  data = "C D E C C D E C E F G E F G"
17  
18  # open a new file in write mode
19  f = open("my_song.txt", "w")
20  f.write(data)
21  f.close()
22  
23  # open your file in read mode
24  f = open("my_song.txt", "r")
25  text = f.read()
26  f.close()
27  
28  notes = text.split()
29  
30  # loop through each note in notes
31  for note in notes:
32      freq = freqs[note]
33      # play the note for the beat_duration
34      spkr.pitch(freq)
35      sleep(beat_duration)
36  
37      # pause for articulation
38      spkr.off()
39      sleep(0.05)

Objective 7 - Little Lamb

Add a Little Rhythm!
So far your tunes have been melodic, but the beat... face it, that's a little monotonous.

It's time to spice up the timing.

Here are the notes for the song Mary Had a Little Lamb:

G6, F6, E6, F6, G6, G6, G6, F6, F6, F6, G6 A6, A6

But some of those notes need to be played longer than others!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 207 of 237



How can you easily link a note with its duration?

Introducing... Multidimensional Lists!

Keeping your songs in the format ['C', 'D', 'E', 'C', 'C'...] is an acceptable solution when you just have a sequence of notes.

But now each note requires a second piece of data, a duration!

A multidimensional list, also known as a "matrix", is a perfect way to group related data. For example:

song = [[note, beats], [note, beats]...]

Check it out - lists inside a list!

A Lot to Unpack
You may already have used Python's unpacking feature to assign elements of a list or tuple to variable names in one go:

# Get the first note and beats in the song
note, beats = song[0]

But did you know you can do that as part of a for loop? See the loop tool for details on using a target_list in your for loop.

This could come in handy for playing your song:

for note, beat in song:
    # This is gonna rock...

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  song = [
17      ["E", 1],
18      ["D", 1],
19      ["C", 1],
20      ["D", 1],  

21      ["E", 1],
22      ["E", 1],
23      ["E", 2],
24      ["D", 1],
25      ["D", 1],
26      ["D", 2],
27      ["E", 1],
28      ["G", 1],
29      ["G", 2]
30  ]
31  
32  # Loop through each [note,beats] element of song
33  for ??? in song:  # TODO: target list
34      # Lookup the frequency of this note

Not Just notes Anymore!

Your song is now a list of lists!

Each element of the song is itself a list of [note, beats]

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 208 of 237



35      f = freqs[note]  

36  
37      # Play the note for the beat_duration * number of beats
38      spkr.pitch(f)
39      sleep(beats * beat_duration) 

40  
41      # Pause for articulation
42      spkr.off()
43      sleep(0.05)
44  

Goals:

Unpack note and beat from your song using the target list in a for loop.

Play the following notes in order:

G, F, E, F, G, G, G, F, F, F, G, A, A

Tools Found: list, Assignment, tuple, Loops, Iterable

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  song = [
17      ["E", 1],
18      ["D", 1],
19      ["C", 1],
20      ["D", 1],
21      ["E", 1],
22      ["E", 1],
23      ["E", 2],
24      ["D", 1],
25      ["D", 1],
26      ["D", 2],
27      ["E", 1],
28      ["G", 1],
29      ["G", 2]

Fix This

You need to use the target_list form of the for loop.

Unpack each song element into note, beats.

Sleep while the note is playing

Turn the speaker on, sleep for the length of the beats,
then turn the speaker off.

Multiply beats * beat_duration to calculate how many seconds to sleep().

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 209 of 237



30  ]
31  
32  # Loop through each [note,beats] element of song
33  for note, beats in song:
34      freq = freqs[note]
35      # play the note for the beat_duration * number of beats
36      spkr.pitch(freq)
37      sleep(beats * beat_duration)
38  
39      # pause for articulation
40      spkr.off()
41      sleep(0.05)
42  

Objective 8 - Black Sheep

An INTeresting problem...
You calculated your note duration by multiplying

beat_duration x beats

both of which are integers.

What if beats was a string ?

Okay, bear with me here. In the next Objective you are going to be reading all this from a file, and it's
gonna come in as strings all the way. So, might as well deal with it now, right?

Introducing the int() function!

int(x) takes a value x and converts it to an integer!

The value can be a:

string
float

... even a bool

A Melody from the String Section

For this objective you'll be coding another song, using only strings!

Here's the song... Feel free to copy and paste it into your code!

black_sheep = [
    ["C", "2"],
    ["C", "2"],
    ["G", "2"],
    ["G", "2"],
    ["A", "1"],
    ["A", "1"],
    ["A", "1"],
    ["A", "1"],
    ["G", "4"],
    ["F", "2"],
    ["F", "2"],
    ["E", "2"],
    ["E", "2"],
    ["D", "2"],
    ["D", "2"],
    ["C", "4"]
]

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 210 of 237



 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  black_sheep = [
17      ["C", "2"],
18      ["C", "2"],  

19      ["G", "2"],
20      ["G", "2"],
21      ["A", "1"],
22      ["A", "1"],
23      ["A", "1"],
24      ["A", "1"],
25      ["G", "4"],
26      ["F", "2"],
27      ["F", "2"],
28      ["E", "2"],
29      ["E", "2"],
30      ["D", "2"],
31      ["D", "2"],
32      ["C", "4"]
33  ]
34  
35  def play_song(song):
36      # Loop through each [note, str_beats] in the song
37      for note, str_beats in song:  

38          # Convert string beats to integer
39          beats = int(str_beats)  

40  
41          # Lookup the frequency of this note
42          f = freqs[note]
43  
44          # Play the note for the beat_duration
45          spkr.pitch(f)
46          sleep(beats * beat_duration)
47  
48          # Pause for articulation
49          spkr.off()
50          sleep(0.05)
51  
52  play_song(black_sheep)  

Stringified Beats!

This is a new song... can you guess the song from its name?

Notice how the beats are now strings.

Another Funky Function

A bit of refactoring here. Notice this function's parameter is the song to play.

Just use your keyboard or mouse to select the whole for loop and press TAB to indent it so it fits 
right inside the loop. (see editor shortcuts for more)

Integer Conversion

Convert that string to an integer so you can multiply it with beat_duration later.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 211 of 237



Goals:

Create an integer variable named beats from a string using the int function.

You will need to change your unpacking variable name to something different from "beats".

Then do the int() conversion inside the for loop.

Create a function named play_song(song) and move your whole for loop inside it.

Use the Editor Shortcuts to select the entire loop and indent it beneath the function def.

Call your new function at the bottom of your program, passing it the song as an argument.

Play the following notes in order:

C, C, G, G, A, A, A, A, G, F, F, E, E, D, D, C

With the following beats:

2, 2, 2, 2, 1, 1, 1, 1, 4, 2, 2, 2, 2, 2, 2, 4

Tools
Found:

int, str, float, bool, Assignment, Loops, Functions, Editor Shortcuts, Indentation, Keyword and Positional Arguments, Refactoring,
Parameters, Arguments, and Returns

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  black_sheep = [
17      ["C", "2"],
18      ["C", "2"],
19      ["G", "2"],
20      ["G", "2"],
21      ["A", "1"],
22      ["A", "1"],
23      ["A", "1"],
24      ["A", "1"],
25      ["G", "4"],
26      ["F", "2"],
27      ["F", "2"],
28      ["E", "2"],
29      ["E", "2"],
30      ["D", "2"],
31      ["D", "2"],
32      ["C", "4"]
33  ]
34  
35  def play_song(song):
36      # Loop through each note in notes
37      for note, str_beats in song:
38          # Convert string beats to integer
39          beats = int(str_beats)

Don't forget to call your new function, so the song actually plays!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 212 of 237



40  
41          # Lookup the frequency of this note
42          f = freqs[note]
43  
44          # Play the note for the beat_duration
45          spkr.pitch(f)
46          sleep(beats * beat_duration)
47  
48          # Pause for articulation
49          spkr.off()
50          sleep(0.05)
51  
52  play_song(black_sheep)

Objective 9 - Rain, Rain

Another Song File!
I've placed rain_rain_song.csv in your filesystem!

It's saved in the format:

G,2
E,2
G,1

On each line, the note and number of beats are separated by a comma ','.

You will need to do some string operations to convert this into a multidimensional list!

Introducing readlines()

If you take a look at the file operations tool, you'll see the familiar f.read() function which returns a string. But also there is
f.readlines().

This returns a list of strings, one for each line in the file!

f.readlines() would turn the above file string into this:

["G,2", "E,2", "G,1"]

Make Mine Multidimensional

The list above is close, but not exactly what you need for your play_song(song) function.

You need a "list of lists", not a "list of strings".
How to convert "G,2" into ["G", "2"] ?

Check out the split() function of strings

Example:

line = "G,2"  # Line from the file
note_beat = line.split(",")  # Separate by comma
print(note_beat) # Prints: ["G", "2"]

You've got all the tools you need, time to code!

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 213 of 237



11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  # Open the file and read in the lines
17  f = open("rain_rain_song.csv", "r")
18  file_lines = f.readlines()
19  f.close()  

20  
21  # Build a multidimensional list from the file_lines
22  song = []
23  for line in file_lines:
24      # Make a list [note, beat] from each line in file
25      note_beat = line.split(",")
26      song.append(note_beat)  

27  
28  def play_song(song):
29      # Loop through each [note, str_beats] in song
30      for note, str_beats in song:
31          # Convert string beats to integer
32          beats = int(str_beats)
33  
34          # Lookup the frequency of this note
35          f = freqs[note]
36  
37          # Play the note for the beat_duration
38          spkr.pitch(f)
39          sleep(beats * beat_duration)
40  
41          # Pause for articulation
42          spkr.off()
43          sleep(0.05)
44  
45  play_song(song)  

Goals:

Read the data from rain_rain_song.csv with readlines().

Split each line from the file using the split(",") function.

Play the notes and beats from the file rain_rain_song.csv.

Tools Found: str, list, Files, Loops

Open the File

Just like before... 

But this time use readlines() to get a list of strings, one for each line in the file.

Building the Matrix

Start with an empty list to hold your song. Then loop over each line of the file and:

1. Split the comma-separated line string into a list: [note, str_beat]
2. Append this new list to the song.

Second Verse, Same as the First!

The rest of your code is the same.

Nice!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 214 of 237



Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  # Open the file and read in the lines
17  f = open("rain_rain_song.csv", "r")
18  file_lines = f.readlines()
19  f.close()
20  
21  # Build a multidimensional list from the file_lines
22  song = []
23  for line in file_lines:
24      # Make a list [note, beat] from each line in file
25      note_beat = line.split(",")
26      song.append(note_beat)
27  
28  def play_song(song):
29      # Loop through each [note, str_beats] in song
30      for note, str_beats in song:
31          # Convert string beats to integer
32          beats = int(str_beats)
33  
34          # Lookup the frequency of this note
35          f = freqs[note]
36  
37          # Play the note for the beat_duration
38          spkr.pitch(f)
39          sleep(beats * beat_duration)
40  
41          # Pause for articulation
42          spkr.off()
43          sleep(0.05)
44  
45  play_song(song)

Objective 10 - Jukebox

Bringing it all together
I've placed 3 more files in your filesystem!

song_files = [
    "jingle_bells_song.csv",
    "twinkle_twinkle_song.csv",
    "rain_rain_song.csv",
    "black_sheep_song.csv"
]

You've already coded a function to play each song individually.

Now it's time to make a jukebox!

Jukebox Operation
Play one of the four songs when button BTN-0 on CodeBot is pressed.

Next time it's pressed, play the next song in the list.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 215 of 237



That's it. Get coding!

CodeTrek:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  song_files = [
17      "jingle_bells_song.csv",
18      "twinkle_twinkle_song.csv",
19      "rain_rain_song.csv",
20      "black_sheep_song.csv"
21  ]  

22  
23  def decode_song_file(name):
24      # Open the file and read in the lines
25      f = open(name, "r")
26      file_lines = f.readlines()  

27      f.close()
28  
29      # Build a multidimensional list from the file_lines
30      song = []

The Song List

Copy this from the Objective instructions.

These files have been added to your filesystem

Package Your Code

You've already written code to decode a song file. You just need to move it inside a function.

Make a function that:

Takes a file name as a parameter.
Returns the song as a multidimensional list. 

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 216 of 237



31      for line in file_lines:
32          # Make a list [note, beat] from each line in file
33          note_beat = line.split(",")
34          song.append(note_beat)
35          
36      return song
37  
38  # Build a list of songs decoded from files
39  song_list = []
40  for filename in song_files:
41      s = decode_song_file(filename)
42      song_list.append(s)  

43  
44  def play_song(song):
45      # Loop through each [note, str_beats] in song
46      for note, str_beats in song:
47          # Convert string beats to integer
48          beats = int(str_beats)
49  
50          # Lookup the frequency of this note
51          f = freqs[note]
52  
53          # Play the note for the beat_duration
54          spkr.pitch(f)
55          sleep(beats * beat_duration)
56  
57          # Pause for articulation
58          spkr.off()
59          sleep(0.05)
60  
61  
62  # Start with first song in list
63  i_song = 0 
64  
65  while True:
66      if buttons.was_pressed(0):
67          # Play the next song!
68          selected_song = song_list[i_song]
69          play_song(selected_song)  

70  
71          # Advance to next song index
72          i_song = i_song + 1
73  
74          # Wrap around at end of list
75          if i_song == len(song_list):
76              i_song = 0  

77  

Song Catalog

Iterate through the song_files and use your decode function to convert them all to songs you can play.

When this loop finishes you will have decoded all the files into songs and collected them in song_list.

Main Loop - Musical Buttons!

Until you press a button this loop just spins forever checking if one was pressed.

Press BTN0 to play the next song.
Notice i_song starts with index 0, the first song in the list.

Coders often use 'i' in a variable name to mean "index".

Classic wrap-around code.

Just like PacMan!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 217 of 237



Goals:

Play the next song when button BTN-0 was pressed.

Listen to 'jingle_bells_song.csv'

Listen to 'twinkle_twinkle_song.csv'

Listen to 'rain_rain_song.csv'

Listen to 'black_sheep_song.csv'

Tools Found: Functions, Buttons, Parameters, Arguments, and Returns, Iterable, list, Variables

Solution:

 1  from botcore import *
 2  from time import sleep
 3  
 4  tempo = 150 # beats per minute
 5  beat_duration = 60 / tempo # seconds
 6  
 7  freqs = {
 8      "C": 1047,
 9      "D": 1175,
10      "E": 1319,
11      "F": 1397,
12      "G": 1568,
13      "A": 1760
14  }
15  
16  song_files = [
17      "jingle_bells_song.csv",
18      "twinkle_twinkle_song.csv",
19      "rain_rain_song.csv",
20      "black_sheep_song.csv"
21  ]  #@1
22  
23  def decode_song_file(name):
24      # Open the file and read in the lines
25      f = open(name, "r")
26      file_lines = f.readlines()  #@2
27      f.close()
28  
29      # Build a multidimensional list from the file_lines
30      song = []
31      for line in file_lines:
32          # Make a list [note, beat] from each line in file
33          note_beat = line.split(",")
34          song.append(note_beat)
35          
36      return song
37  
38  # Build a list of songs decoded from files
39  song_list = []
40  for filename in song_files:
41      s = decode_song_file(filename)
42      song_list.append(s)  #@3
43  
44  def play_song(song):
45      # Loop through each [note, str_beats] in song
46      for note, str_beats in song:
47          # Convert string beats to integer  #@4
48          beats = int(str_beats)
49  
50          # Lookup the frequency of this note
51          f = freqs[note]
52  
53          # Play the note for the beat_duration
54          spkr.pitch(f)
55          sleep(beats * beat_duration)
56  

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 218 of 237



57          # Pause for articulation
58          spkr.off()
59          sleep(0.05)
60  
61  
62  # Start with first song in list
63  i_song = 0  #@5
64  
65  while True:
66      if buttons.was_pressed(0):
67          # Play the next song!
68          selected_song = song_list[i_song]
69          play_song(selected_song)  #@6
70  
71          # Advance to next song index
72          i_song = i_song + 1
73  
74          # Wrap around at end of list
75          if i_song == len(song_list):
76              i_song = 0  #@7
77  

Mission 15 - Cyber Storm
Help protect an email server by using file operations!

Objective 1 - .eml

If you receive an email about tinned meat, don’t open it!
It's spam...
I've placed an email in your filesystem named 'Antivirus.eml'.

'.eml' is a standard file extension for emails.

Email files can be read as though they are plain text.

The file contains two primary sections (header and body) and many
different parts.

What are the different parts of an
email?
We all know how emails work, but coding often requires you to explicitly define the parts of a system.

Humor me in the name of security!

An email consists of:

"From" - the sender
"To" - the recipient
"Date" - the date the email was sent
"Subject" - the brief or title
"Body" - the content

Time to print the contents of the 'Antivirus.eml' using File Operations!

Create a new file!

Use the File → New File menu to create a new file called "email_scan.py"

CodeTrek:

1  email_file = 'Antivirus.eml'
2  

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 219 of 237



3  f = # TODO: Open the email in read mode!

4  file_contents = f.read()

5  print(file_contents)
6  f.close()

Goals:

Open the "Antivirus.eml" file in read mode.

Print the entire contents of "Antivirus.eml" to the console.

Tools Found: Files, Print Function, str

Solution:

1  email_file = 'Antivirus.eml'
2  
3  f = open(email_file, "r")
4  file_contents = f.read()
5  print(file_contents)
6  f.close()

Objective 2 - With or Without You

The 'with' Statement!
In the first objective you opened a file like this:

f = open(file_name, "r")
file_contents = f.read()
f.close()

f.close() is called because it releases resources back to the computer.

That seems like it would be easy to forget!!

This is where the with statement comes in.

It will close the file for you automatically!

This is awesome for many reasons, two of which being:

1. You don't have to call f.close().
2. The resources get freed up even if there is an error in your code.

Use the open(filename, mode) function!

Filename is a string of the file's name
For reading use the "r" mode

The open function returns a file object.

f = open("Antivirus.eml", "r")

Once you have an open file you can read its contents.

f.read() will read the entire file at once.

Always close your file after you are done using it.

This will free up resources and flush the file.
Your computer will thank you!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 220 of 237



Here's what the above code would look like utilizing with!

with open(file_name, "r") as f:
    file_contents = f.read()

Easy as that!

Also, this time why don't you use the readlines() function instead of read()?

readlines() reads the entire file but...

It returns a list of strings instead of just a single string.
This will be useful for breaking down the email.

CodeTrek:

1  email_file = "Antivirus.eml"
2  
3  # TODO: Open the email_file using the 'with' statement!

4      file_contents = # TODO: Read the file contents using readlines()

5      print(file_contents)

Goals:

Open the "Antivirus.eml" email file using the with statement.

Use the readlines() function to read the entire file into a list.

Print the contents of the email file, in the format returned from readlines(), to the console.

Tools Found: Exception, list, str, Print Function

Solution:

1  email_file = "Antivirus.eml"
2  
3  with  open (email_file, "r") as f:
4      file_contents = f.readlines()
5      print(file_contents)
6  

Objective 3 - Newline

Line by line
When you've got a small file it's fine to read all of the content at once.

If you're working with a large file, it may be more convenient to read the data out line by line!

Fortunately, open() allows for this because it returns a file as an iterable.

This let's you step through each line in the file using a for loop.

for line in f:
    # do something with line

Remember, you can use with open(email_file, "r") as f: instead of f = open(email_file, "r")!

The file object can be accessed inside the with block.

This time use f.readlines() instead of f.read()

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 221 of 237



Check out File Operations for an example!

Let's talk escape sequences!
In the previous objective, the "From" line looked like this:

'From: Anti Virus <antivirus@firialabs.com>\r\n'

What are those strange things, '\r' and '\n'?

They are called escape sequences!!
Each one of those (backslash included) inserts a single "special character".

Here are a few you are likely to run across:

Char Name Description
'\n' New Line Unsuprisingly, it creates a new line in a text file!
'\r' Carriage Return Set the cursor to the beginning of the line
'\t' Tab A tab that shows spaces as set by your text editor

Since you're working on isolating components of an email, these line endings need to be removed.

Introducing strip()!
'string'.strip(chars) is a function that removes characters from the beginning and end of a string!

If chars is not given, the function just removes whitespace.

Whitespaces are more than just spaces. They include:

Newlines '\n'
Carriage Returns '\r'
Tabs '\t'
Spaces ' '

CodeTrek:

1  email_file = 'Antivirus.eml'
2  
3  with open(email_file) as f:
4      email = ""

5      # TODO: Iterate over file with a for loop

6          email = email + line.strip()

7      print(email)

An empty string at the start.

You will be appending the contents of each line to this string.
But first be sure to strip() the whitespace!

You can treat f just like a list here! 

for line in f:
    # Do something with the line!

line.strip() will remove all whitespace characters from the beginning and end of a file.

Append the line to the email string after you have stripped it!

Remember the + operator means append in string-land.
Also known as concatenation!

Print the cleaned-up email contents.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 222 of 237



Goals:

Iterate over the email file to read its lines one by one using a for loop.

1. strip() the whitespace from each line in the file.
2. Combine all the stripped lines into a single string variable.
3. Print the variable to the console.

Tools Found: Iterable, Loops, Files, Escape Sequences, str, Print Function, list

Solution:

1  email_file = 'Antivirus.eml'
2  
3  with open(email_file) as f:
4      email = ''
5      for line in f:
6          email = email + line.strip()
7      print(email)

Objective 4 - Email Isolate

Where does the chicken check his email?
His inboks...
Wouldn't it be cool if you could access the email's date by typing email['date']?

Apply some previous concepts and organize the email in a dictionary!

First, you'll need to somehow isolate the 'Date' line from the other lines.

Introducing startswith!
Prepare to be shocked...

s.startswith(prefix) returns True if the string s starts with prefix!

Since a stripped 'Date' looks like 'Date: Fri, 14 Aug 1987 09:10:17 -0800' you can identify it using startswith('Date: ') like so:

is_date_line = 'Date: Fri, 14 Aug 1987 09:10:17 -0800'.startswith('Date: ')
print(is_date_line) # True

Ah Ha!

After identifying the line...
Theres one last bit of formatting before adding the actual date to a dictionary.

You'll need to get rid of the 'Date: ' part of the string! A good way to do that is "slicing".
A string can be sliced using the notation s[start:stop].

Just like ranges, string slicing begins at the start and ends 1 character before the stop.
It will just return the rest of the string if stop is missing.

CodeTrek:

 1  email_file = 'Crypto.eml'
 2  
 3  with open(email_file) as f:
 4      email = {}

Each line in the email should have been stripped of whitespace.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 223 of 237



 5      for line in f:
 6          clean_line = line.strip()

 7          if line.startswith("Date: "):

 8              email['date'] = clean_line[6:]

 9          elif # TODO: Catch the 'From' line with startswith

10              email['from'] = # TODO: slice the clean_line to isolate the data

11          elif line.startswith("To: "):
12              email['to'] = clean_line[4:]
13          elif line.startswith("Subject: "):
14              email['subject'] = clean_line[9:]
15      print(email)

Hint:

Your dictionary should look like this:

email = {
  "subject": "Crypto",
  "to": "Codee <codee@firialabs.com>",
  "from": "Crypto Telemarketer <cryptomarketing@firialabs.com>",
  "date": "Sat, 03 Jan 2009 19:06:00 -0100"
}

Goals:

Add a 'from' key to a dict named email.

email['from'] = "contents of the FROM line..."

The value should be the 'From' line in 'Crypto.eml'.

Start with a new empty dictionary.

Strip whitespace from the beginning and end of the line.

Identify the 'Date' line using startswith.

clean_line looks like 'Date: Sat, 03 Jan 2009 19:06:00 -0100'.

You want the value to be the contents of the Date line.

Gotta remove the "Date: " prefix.
clean_line[6:] returns a string with the first 6 characters removed!

How can you tell whether a line starts with "From: "?

That's right!

line.startswith("From: ")!

Now you need to cut "From: " out of the string!

"From: " is 6 characters long!

You can remove 6 characters from the start of a string like this:

email['from'] = clean_line[6:]

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 224 of 237



Strip off whitespace line endings and 'From: ' before assigning the value.

1. Add the 'date', 'to' and 'subject' key:value pairs to the dict.
2. Print the entire dict to the console.

Tools Found: dictionary, str, Ranges

Solution:

 1  email_file = 'Crypto.eml'
 2  
 3  with open(email_file) as f:
 4      email = {}
 5      for line in f:
 6          clean_line = line.strip()
 7          if line.startswith("Date: "):
 8              print(clean_line)
 9              email['date'] = clean_line[6:]
10          elif line.startswith("From: "):
11              email['from'] = clean_line[6:]
12          elif line.startswith("To: "):
13              email['to'] = clean_line[4:]
14          elif line.startswith("Subject: "):
15              email['subject'] = clean_line[9:]
16      print(email)

Quiz 1 - More File Ops

Question 1: What is x in the code below?

with open(my_file, 'r') as f:
    for x in f:
        print(x)

done A Line in the File

close A Character in the File

close Every Number in the File

Question 2: What is this character in Python '\n'?

done New Line

close Tab

close Carriage Return

close Backspace

Question 3: Why would you use with to open a file?

done It will close it for you.

close It is opened with super speed.

close It merges it with a second file.

Question 4: What is this character in Python '\t'?

done Tab

close New Line

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 225 of 237



close Carriage Return

close Backspace

Objective 5 - Body Isolate

Something's missing...
You still need the body of the email.

The body is unique from the other components:

It can be multiple lines!
It doesn't start with a 'Body: ' prefix.

Oh no!! That breaks your system!

So, how can you find it?

The "Internet Message Format", which was standardized by RFC 5322
(look it up if you'd like!) says this:

The body is simply a sequence of characters that follows the header section and is separated from the header section by
an empty line (i.e., a line with nothing preceding the CRLF).

Simply put, the email will have a line that only contains '\r\n' (aka CRLF).

Everything after that line is the body!

Isolating the body is easier than it first appears!

The file object "keeps track" of which lines you've already read as you iterate.

If you call read() after you've iterated over a few lines, you'll get the rest of the file!!

Try to put it all together!

CodeTrek:

 1  email_file = 'Y2K Bug.eml'
 2  
 3  def decode_email(filename):

 4      email = {}
 5      with open(filename) as f: 
 6          for line in f: 
 7              clean_line = line.strip() 
 8              if line.startswith("Date: "):
 9                  email['date'] = clean_line[6:] 
10              elif line.startswith("From: "):
11                  email['from'] = clean_line[6:]
12              elif line.startswith("To: "):
13                  email['to'] = clean_line[4:]
14              elif line.startswith("Subject: "):
15                  email['subject'] = clean_line[9:]
16              elif # TODO: catch the newline!

17                  break

Create a function that decodes an entire email.

You can use the editor shortcuts to select and indent your code beneath the def statement.

To find the body, check if the line was nothing but whitespace '\r\n'!

If line.strip() == '', you know the line only included whitespace characters!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 226 of 237



18  
19          email['body'] = # TODO: read the body from the file!

20      return email
21  
22  eml = decode_email(email_file)
23  
24  print(eml) 

Hint:

Make sure you don't include the empty line after the header in your email 'body'.

Goal:

1. Assign a 'body' key:value pair with the value of the "Y2K Bug.eml" body to the email dict.
2. Print the entire dictionary to the console.

Tools Found: Iterable, dictionary, Editor Shortcuts, Indentation, undefined, Loops

Solution:

 1  email_file = 'Y2K Bug.eml'
 2  
 3  def decode_email(filename):
 4      email = {}
 5      with open(filename) as f: 
 6          for line in f: 
 7              clean_line = line.strip() 
 8              if line.startswith("Date: "):
 9                  email['date'] = clean_line[6:] 
10              elif line.startswith("From: "):
11                  email['from'] = clean_line[6:]
12              elif line.startswith("To: "):
13                  email['to'] = clean_line[4:]
14              elif line.startswith("Subject: "):
15                  email['subject'] = clean_line[9:]
16              elif line.strip() == '': # explain email spec for this 
17                  break
18          email['body'] = f.read() # teach that reading continues from where it left off last
19      return email
20  
21  eml = decode_email(email_file)
22  
23  print(eml)
24  

Objective 6 - Are You In or Not?

Word Slayer
You've got the email translated to a dict.

Time to work on the security!

You'll need to write a function that can identify undesirable language and replace it with a notice of removal.

If the line is just whitespace, then break the for loop so you can read the remaining lines as the body!

f.read() will give you the rest of the email!

You've already iterated through the date, from, to, and subject in the header.

Simply assign the rest to the 'body' key like email['body'] = f.read()!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 227 of 237



If only we could search a string for specific words...

Introducing the in and not in keywords!
The in keyword has two purposes:

1. Iterating through a for loop.
2. Checking if a value exists in a sequence.

You can use in to check if a word is in a string!!

WAIT FOR IT...

not in is the opposite of in!

But how do you replace a string?

Introducing replace()
s.replace(old, new) replaces old with new in string s.

Pretty straightforward right?

CodeTrek:

 1  email_file = 'Creeper Virus.eml'
 2  
 3  def decode_email(filename):
 4      email = {}
 5      with open(filename) as f:
 6          for line in f:
 7              clean_line = line.strip()
 8              if line.startswith("Date: "):
 9                  email['date'] = clean_line[6:]
10              elif line.startswith("From: "):
11                  email['from'] = clean_line[6:]
12              elif line.startswith("To: "):
13                  email['to'] = clean_line[4:]
14              elif line.startswith("Subject: "):
15                  email['subject'] = clean_line[9:]
16              elif line.strip() == '':
17                  break
18          email['body'] = f.read()
19      return email
20  
21  def scan_email(email):

22      if # TODO: if you found the string 'virus' in the body

23          print("Found a virus. Removing it.")
24          email['body'] = # TODO: replace the word 'virus' with 'REMOVED' in the body!

25          return True
26      else:
27          print('No virus detected')
28          return False
29  

Add a new function to scan the email dict for viruses!

Use the in keyword here!

To catch a 'substring' in a 'string', simply check if 'substring' in 'string'.

That would look like if 'virus' in email['body']:!

Use 'string'.replace(old, new) to swap the word 'virus' with 'REMOVED'

In this case, your 'string' is email['body']

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 228 of 237



30  eml = decode_email(email_file)
31  virus_found = scan_email(eml)
32  print(eml['body'])

Goals:

Replace the word 'virus' with 'REMOVED' in the email['body'] using the replace() function!

You will be reading the 'Creeper Virus.eml' file.

Print the new email body to the console.

Tools Found: dictionary, Loops, str, Print Function, Functions

Solution:

 1  email_file = 'Creeper Virus.eml'
 2  
 3  def decode_email(filename):
 4      email = {}
 5      with open(filename) as f:
 6          for line in f:
 7              clean_line = line.strip()
 8              if line.startswith("Date: "):
 9                  email['date'] = clean_line[6:]
10              elif line.startswith("From: "):
11                  email['from'] = clean_line[6:]
12              elif line.startswith("To: "):
13                  email['to'] = clean_line[4:]
14              elif line.startswith("Subject: "):
15                  email['subject'] = clean_line[9:]
16              elif line.strip() == '':
17                  break
18          email['body'] = f.read()
19      return email
20  
21  def scan_email(email):
22      if 'virus' in email['body']:
23          print("Found a virus. Removing it.")
24          email['body'] = email['body'].replace('virus', 'REMOVED')
25          return True
26      else:
27          print('No virus detected')
28          return False
29  
30  eml = decode_email(email_file)
31  virus_found = scan_email(eml)
32  print(eml['body'])

Objective 7 - Blocklist

Flag the "Bad Actors"
After you've identified an email as containing a virus:

Keep note of the sender's address so you can block their emails in
the future!

A list of disallowed senders is called a "blocklist"!

You can create a file called 'blocklist.csv' that will persist through
objectives!

Print the new 'body' to the console to witness your amazing security!

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 229 of 237



How do I create a file?
You will use the same open(filename, mode) function with a different mode!

There are two mode 's that will create a file if one doesn't exist.

1. 'w' or 'write' overwrites if the file already exists and creates a new one!
2. 'a' or 'append' writes to the end of a file if it exists, adding to the previous content!

Interested in more modes? Check out File Operations!

Notify the User!
Print a message the first time you create a blocklist.

That means you need to check if one already exists...

But how do I check if a file exists?

You ask extremely pertinent questions...

Introducing os.path.exists()

os.path.exists(filepath) returns whether filepath exists on the file system!

CodeTrek:

 1  import os

 2  
 3  email_file = 'Creeper Virus.eml'
 4  
 5  def decode_email(filename):
 6      email = {}
 7      with open(filename) as f:
 8          for line in f:
 9              clean_line = line.strip()
10              if line.startswith("Date: "):
11                  email['date'] = clean_line[6:]
12              elif line.startswith("From: "):
13                  email['from'] = clean_line[6:]
14              elif line.startswith("To: "):
15                  email['to'] = clean_line[4:]
16              elif line.startswith("Subject: "):
17                  email['subject'] = clean_line[9:]
18              elif line.strip() == '':
19                  break
20          email['body'] = f.read()
21      return email
22  
23  def scan_email(email):
24      if 'virus' in email['body']: 
25          print("Found a virus. Removing it")
26          email['body'] = email['body'].replace('virus', 'REMOVED')
27          return True
28      else:
29          print('No virus detected')
30          return False
31  
32  eml = decode_email(email_file)
33  virus_found = scan_email(eml)
34  
35  # If a virus was found, add sender to the blocklist!
36  if virus_found:
37      # Alert user if this is the first time creating blocklist
38      # TODO: if not os.path.exists... 

Make sure to import the os module.

This will let you use the os.path.exists() function.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 230 of 237



39          print("Creating blocklist!")
40  
41      # TODO: Open 'blocklist.csv' in append mode!

42          bl_entry = eml['from'] + ',' 

43          f.write(bl_entry)

Goals:

Print "Creating a blocklist" the first time you create 'blocklist.csv'

Check if the 'blocklist.csv' file exists with os.path.exists().

Add the "bad actor" 'from' email address to the blocklist.

Append the dict 'from' value followed by a comma ',' to 'blocklist.csv' if a virus is found in 'Creeper Virus.eml'.

Tools Found: Files, dictionary, str

Solution:

 1  import os
 2  
 3  email_file = 'Creeper Virus.eml'
 4  
 5  def decode_email(filename):
 6      email = {}
 7      with open(filename) as f:
 8          for line in f:
 9              clean_line = line.strip()
10              if line.startswith("Date: "):
11                  email['date'] = clean_line[6:]
12              elif line.startswith("From: "):
13                  email['from'] = clean_line[6:]
14              elif line.startswith("To: "):
15                  email['to'] = clean_line[4:]
16              elif line.startswith("Subject: "):
17                  email['subject'] = clean_line[9:]
18              elif line.strip() == '':
19                  break

Check to see if the 'blocklist.csv' file does NOT exist.

if not os.path.exists('blocklist.csv'):

Can you guess how to open the file in append mode?

Yep!

It's the same as before except the mode is 'a': 

with open('blocklist.csv', 'a') as f:

The format of a '.csv' or Comma Separated Values is data separated by commas.

You can append a comma to the bl_entry string using the + operator!

bl_entry = eml['from'] + ','

This writes the email address + a ','

Now write to the blocklist file.

f.write(bl_entry)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 231 of 237



20          email['body'] = f.read()
21      return email
22  
23  def scan_email(email):
24      if 'virus' in email['body']: 
25          print("Found a virus. Removing it")
26          email['body'] = email['body'].replace('virus', 'REMOVED')
27          return True
28      else:
29          print('No virus detected')
30          return False
31  
32  eml = decode_email(email_file)
33  virus_found = scan_email(eml)
34  
35  if virus_found: 
36      # Alert user if this is the first time creating blocklist
37      if not os.path.exists('blocklist.csv'):
38          print("Creating blocklist!")
39  
40      with open('blocklist.csv', 'a') as f:
41          bl_entry = eml['from'] + ','
42          f.write(bl_entry)

Objective 8 - Threat Removal

Put that blocklist to use!
That running list of nefarious emailers you've developed is about to come in handy.

You can prevent a virus from even making it to the inbox by deleting any emails received from blocklisted addresses.

Introducing os.remove()!

If the sender's email is on the blocklist...

Delete the file by calling os.remove(filepath)!

Reminder: The emails on the blocklist are separated by a ','

You can call file_contents.split(',') to get an array of addresses!
See the string tool for more details on split()

CodeTrek:

 1  import os
 2  
 3  email_file = 'Creeper Virus.eml'
 4  
 5  def decode_email(filename):
 6      email = {}
 7      with open(filename) as f:
 8          for line in f:
 9              clean_line = line.strip()
10              if line.startswith("Date: "):
11                  email['date'] = clean_line[6:]
12              elif line.startswith("From: "):
13                  email['from'] = clean_line[6:]
14              elif line.startswith("To: "):
15                  email['to'] = clean_line[4:]
16              elif line.startswith("Subject: "):
17                  email['subject'] = clean_line[9:]
18              elif line.strip() == '':
19                  break
20          email['body'] = f.read()
21      return email
22  
23  def scan_email(email):
24      if 'virus' in email['body']: 
25          email['body'] = email['body'].replace('virus', 'REMOVED')

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 232 of 237



26          return True
27      else:
28          return False
29  
30  def spam_filter(sender, filename):

31      with open('blocklist.csv', 'r') as f:
32          data = f.read()
33          blocklist = # TODO: separate the adresses using split!

34          if sender in blocklist:

35              # TODO: delete the file!

36  
37  eml = decode_email(email_file)
38  virus_found = scan_email(eml)
39  
40  if virus_found: 
41      # Alert user if this is the first time creating blocklist
42      if not os.path.exists('blocklist.csv'):
43          print("Creating blocklist!")
44  
45      with open('blocklist.csv', 'a') as f:
46          bl_entry = eml['from'] + ','
47          f.write(bl_entry)
48  
49  spam_filter(eml['from'], email_file)

Goals:

Read in the entire 'blocklist.csv' file.

Delete the 'Creeper Virus.eml' from the file system if its 'from' value is on the blocklist!

Tools Found: str, list

Solution:

 1  import os
 2  
 3  email_file = 'Creeper Virus.eml'
 4  
 5  def decode_email(filename):

Create a new function for filtering out emails from bad actors!

Read in the whole 'blocklist.csv' and then create a list of blocked senders.

The '.csv' separator is ','. Use it in the 'string'.split() function to create your list!

blocklist = data.split(',')

Check if the email's 'from' is in the list of blocked senders.

Hey, you can use in on lists too!

Use os.remove(filename) to delete a bad email. 

Be careful though! You'll get an error if the file doesn't exist!

Don't forget to call your new spam_filter function.

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 233 of 237



 6      email = {}
 7      with open(filename) as f:
 8          for line in f:
 9              clean_line = line.strip()
10              if line.startswith("Date: "):
11                  email['date'] = clean_line[6:]
12              elif line.startswith("From: "):
13                  email['from'] = clean_line[6:]
14              elif line.startswith("To: "):
15                  email['to'] = clean_line[4:]
16              elif line.startswith("Subject: "):
17                  email['subject'] = clean_line[9:]
18              elif line.strip() == '':
19                  break
20          email['body'] = f.read()
21      return email
22  
23  def scan_email(email):
24      if 'virus' in email['body']: 
25          email['body'] = email['body'].replace('virus', 'REMOVED')
26          return True
27      else:
28          return False
29  
30  def spam_filter(sender, filename):
31      with open('blocklist.csv', 'r') as f:
32          data = f.read()
33          blocklist = data.split(',')
34          if sender in blocklist:
35              os.remove(filename) # teach delete file
36  
37  eml = decode_email(email_file)
38  virus_found = scan_email(eml)
39  
40  if virus_found: 
41      # Alert user if this is the first time creating blocklist
42      if not os.path.exists('blocklist.csv'):
43          print("Creating blocklist!")
44  
45      with open('blocklist.csv', 'a') as f:
46          bl_entry = eml['from'] + ','
47          f.write(bl_entry)
48  
49  spam_filter(eml['from'], email_file)

Quiz 2 - File Modes

Question 1: Which of these returns True?

done 'us' in 'virus'

close 'i' in 'team'

close 'ate' in 'threat'

Question 2: What does the mode 'a' mean in open(my_file, 'a')?

done Append

close Write

close Read

close Exclusive Creation

Question 3: Which of these opens a file for Read only?

done open(my_file, 'r')

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 234 of 237



close open(my_file, 'w')

close open(my_file, 'a')

Question 4: What is the correct code to delete a file?

done os.remove(my_file)

close delete(my_file)

close `ERROR: Invalid Code Block!! f = open(my_file, 'r') f.remove()

ERROR: Invalid Code Block!!

close os.path.delete(my_file)

Question 5: What does break do in the following code?

for i in range(10):
    break
print('Done!')

done Exits the Loop

close Ends Your Program

close Breaks the Internet

Objective 9 - Complete Scan

Testing out the system!
Yahoo!! Your security system is finally ready to test!

I've supplied you with a brand new 'blocklist.csv'.

It contains the sender information of some bad actors!

I also dropped a few more emails on your filesystem

This includes all the emails we've come across so far, plus a couple extras:

(Click the copy button and paste this into your code.)

email_files = [
    'Creeper Virus.eml',
    'Antivirus.eml',
    'Y2K Bug.eml',
    'Crypto.eml',
    'Firework Celebration.eml'
]

If your security program works properly:

All the viruses will be deleted
The safe emails will remain!

Give it a shot!

CodeTrek:

 1  import os
 2  
 3  email_files = [ 

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 235 of 237



 4      'Creeper Virus.eml',
 5      'Antivirus.eml',
 6      'Y2K Bug.eml',
 7      'Crypto.eml',
 8      'Firework Celebration.eml'
 9  ]
10  
11  def decode_email(filename):
12      email = {}
13      with open(filename) as f:
14          for line in f:
15              clean_line = line.strip()
16              if line.startswith("Date: "):
17                  email['date'] = clean_line[6:]
18              elif line.startswith("From: "):
19                  email['from'] = clean_line[6:]
20              elif line.startswith("To: "):
21                  email['to'] = clean_line[4:]
22              elif line.startswith("Subject: "):
23                  email['subject'] = clean_line[9:]
24              elif line.strip() == '':
25                  break
26          email['body'] = f.read()
27      return email
28  
29  def scan_email(email):
30      if 'virus' in email['body']: 
31          email['body'] = email['body'].replace('virus', 'REMOVED')
32          return True
33      else:
34          return False
35  
36  def spam_filter(sender, filename):
37      with open('blocklist.csv', 'r') as f:

38          data = f.read()
39          blocklist = data.split(',')
40          if sender in blocklist:
41              os.remove(filename)
42  
43  #----- New code -----
44  

45  # TODO: iterate over email_files! 

46      eml = decode_email(email_file)

Your email file list

Paste this in from the Objective description.

This time I've supplied you with 'blocklist.csv'.

An accumulation of nefarious emailers from the previous objectives!

New code goes here

Delete the if virus_found: block of code.

This program totally relies on the blocklist.
Your spam_filter() and stuff will move inside a loop below.

Now you just need to loop across the email_files list...

Iterate over the list of email_files and send each through the decoder, scanner, and filter! 

for email_file in email_files:
    # TODO

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 236 of 237



47      virus_found = scan_email(eml)
48      spam_filter(eml['from'], email_file)

Goal:

Delete all email_files sent from any address in 'blocklist.csv'!

Be sure to keep the good ones!

Tools Found: Iterable

Solution:

 1  import os
 2  
 3  email_files = [
 4      'Creeper Virus.eml',
 5      'Antivirus.eml',
 6      'Y2K Bug.eml',
 7      'Crypto.eml',
 8      'Firework Celebration.eml'
 9  ]
10  
11  def decode_email(filename):
12      email = {}
13      with open(filename) as f:
14          for line in f:
15              clean_line = line.strip()
16              if line.startswith("Date: "):
17                  email['date'] = clean_line[6:]
18              elif line.startswith("From: "):
19                  email['from'] = clean_line[6:]
20              elif line.startswith("To: "):
21                  email['to'] = clean_line[4:]
22              elif line.startswith("Subject: "):
23                  email['subject'] = clean_line[9:]
24              elif line.strip() == '':
25                  break
26          email['body'] = f.read()
27      return email
28  
29  def scan_email(email):
30      if 'virus' in email['body']: 
31          email['body'] = email['body'].replace('virus', 'REMOVED')
32          return True
33      else:
34          return False
35  
36  def spam_filter(sender, filename):
37      with open('blocklist.csv', 'r') as f:
38          data = f.read()
39          blocklist = data.split(',')
40          if sender in blocklist:
41              os.remove(filename)
42  
43  for email_file in email_files:
44      eml = decode_email(email_file)
45      virus_found = scan_email(eml)
46      spam_filter(eml['from'], email_file)

Python Level-1 with Virtual Robotics Mission Content

(c)2023 Firia Labs Appendix A 237 of 237




